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Abstract. By representing the evolution of a quantum state with the trajectories of the stars on a Bloch
sphere, the Majorana’s stellar representation provides an intuitive way to understand quantum motion in a
high dimensional projective Hilbert space. In this work we show that the Majorana’s representation offers
a very interesting and intuitive way to understand the nonlinear Landau-Zener tunneling. In particular,
the breakdown of adiabaticity in this tunneling phenomenon can be understood as some of the stars never
reaching the south pole. We also establish a connection between the Majorana stars in the second quantized
model and the single star in the mean field model by using the reduced density matrix.

1 Introduction

Quantum motions in high dimensional Hilbert space
are hard to understand intuitively and geometrically.
Majorana’s insight was that we can establish a geometric
picture with multiple points on the Bloch sphere rather
than one point on a high dimensional Hilbert space [1].
In the stellar representation established by him [1], for
a spin-n/2 system, a quantum state is represented by n
stars on the Bloch sphere [2] and its dynamics are de-
scribed by the trajectories of these stars on the sphere.
This representation is so intuitive that Penrose used it in
his book [3] to explain to the general public the essential
difference between quantum motion and classical motion.

Furthermore, Majorana’s representation yields many
useful insights. For example, in the Majorana’s represen-
tation, geometric phase can not only be visualized as the
solid angles and distances of the Majorana stars on the
Bloch sphere [4–6] but also be interpreted as Aharanov-
Bohm phases acquired by the stars surrounded by a flux
density in the coherent state representation [7,8]. The
entanglement of a symmetric n-qubit pure state can be
intuitively interpreted by the relative positions of the
stars [4,9–11]. It is also useful in quantum systems such
as spinor boson gases [12–16], multilevel qubits [17], and
Lipkin-Meshkov-Glick model [18,19].
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In this work we use Majorana’s representation
to visualize the nonlinear Landau-Zener (LZ) tunnel-
ing [20,22,23], which has been observed experimentally
with Bose-Einstein condensates (BECs) [24,25]. This non-
linear Landau-Zener tunneling can occur in a double-well
BEC system, which can be described by a second quan-
tized two-state model with N bosons. The quantum mo-
tion of such a system can be represented by the trajec-
tories of N Majorana stars on the Bloch sphere. During
the tunneling, the N stars move from the north pole to
the south pole. When the interaction is small, all the stars
can reach the south pole; when the interaction is strong
enough, some of the stars can never reach the south pole.
This corresponds to the well-known breakdown of adia-
baticity in the nonlinear LZ tunneling. When the total
number of bosons N is very large (N → ∞), this sys-
tem can be described alternatively by a mean-field the-
ory [20,22,26]. In the mean-field description, there is only
one Majorana star on the Bloch sphere. The breakdown
of adiabaticity is manifested as the star in the mean-field
model never reaches the south pole. The trajectories of
N Majorana stars in the second quantized model (SQM)
is certainly connected to the trajectory of the single
star in the corresponding mean field model (MFM). This
connection is established explicitly with reduced density
matrix.
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Fig. 1. Majorana representation of the mean-field model. (a)
c = 0, (b) c = 0.2, (c) c = 0.4. Other parameters are v =
0.2, α = 0.001.

2 Mean-field model

In this section, we focus on the MFM, which is given by
the following dimensionless Schrödinger equation [22,23]
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where c is the nonlinear interaction strength between
bosons, γ denotes the level separation, and v is the cou-
pling parameter between the two levels. The total proba-
bility |a|2 + |b|2 is conserved to be 1. When γ is changed
at a constant rate, i.e., γ = αt, tunneling occurs between
the two states. This is the nonlinear LZ tunneling.

This mean-field model can be regarded as a spin-1/2
system, and its quantum state can be represented as a star
on the Bloch sphere. The north pole is (a, b) = (1, 0) and
is denoted as |0〉 while the south pole is (a, b) = (0, 1) and
denoted as |1〉. A quantum state |Ψ〉 = a|0〉 + b|1〉 can be
alternatively described by (up to an overall phase)

|Ψ〉 = cos
θ

2
|1〉 + sin

θ

2
eiφ|0〉, (3)

where θ and φ specify the position of the star on the Bloch
sphere. The population at the two states is reflected by the
latitude of the star on the Bloch sphere. If the star is on
the northern hemisphere, more particles are in mode a;
if it is on the southern hemisphere, more particles are in
mode b.

To study LZ tunneling, we start the system at the
north pole and change the level bias γ with a constant
sweeping rate α. In the linear situation (c = 0), as γ
is changed from −5 to 5 with a small sweeping rate
(α = 0.001), the system moves from the north pole and
reaches the south pole as shown in Figure 1a. This corre-
sponds to the spin completely flips. If the sweeping rate is
big, the star will not reach the south pole. This is the well-
known LZ tunneling. As the interaction increases, the tra-
jectory of the star becomes more interesting. At the crit-
ical point c = v = 0.2 and with a small sweeping rate, as

shown in Figure 1b, the star travels around the south pole
for many rounds before finally reaching it. When c = 0.4
that is bigger than v = 0.2, the star will never reach the
south pole and instead travel around above the south pole
forever as shown in Figure 1c. This is the characteristic
feature of the nonlinear LZ tunneling, that is, tunneling
occurs even in the adiabatic limit [20]. In other words, the
adiabaticity breaks down when the interaction is strong
enough.

3 Second quantized models

The mean field model is valid only when N , the num-
ber of bosons, is large. When N is finite, the system is
more accurately described by the second quantized model.
The second-quantized Hamiltonian of this system can be
written as:
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where â†
↑, â↑ and â†

↓, â↓ are the generators and annihilators
for “spin-up” (in the left well) and “spin-down” (in the
right well) quantum state, respectively.

The second-quantized model can be reduced to the
mean-field model (2) in the limit of N → ∞. We fo-
cus on the GP state |ΨGP 〉 = 1√

N !
(aâ† + bb̂†)N |vac〉 [21]

and compute the expectation value 〈Ĥ〉 = 〈ΨGP |Ĥ |ΨGP 〉.
The mean-field model (2) is obtained as H = 〈Ĥ〉/N .
One can readily check that the probabilities in states a

and b are 〈ΨGP |â†â|ΨGP 〉 = |a|2 and 〈ΨGP |b̂†b̂|ΨGP 〉 = |b|2,
respectively.

As the total number of bosons N is conserved in this
system, the two-mode state of the system can usually be
expressed as:

|Ψ〉 =
N∑

m=0
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]
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(5)

where |m, N − m〉 is a Fock state with m bosons in the
left well (or in the “spin-up” state). Bm’s are the coeffi-
cients and |∅〉 is the vacuum state. In Majorana’s stellar
representation, the state has the following form:

|Ψ〉 =
1

AN

N∏
l=0

[
cos(θl/2)â†

↑ + sin(θl/2)eiφl â†
↓
]
|∅〉, (6)

where AN =
√∑N

m=0 |Bm|2 is the normalization coeffi-
cient [4]. The coordinates of the Majorana stars θl and φl
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Fig. 2. Majorana representation of the second quantized model
for N = 3. (a) c = 0; (b) c = 0.2; (c) c = 0.6; (d) is the
bottom view from the south pole of (c). Other parameters are
v = 0.2, α = 0.001.

can be obtained from Bm by finding the roots of the
polynomial f(z) =

∑N
m=0

Bm√
(N−m)!m!

zm with the relation

zl = tan(θl/2)eiφl .
We again consider the case that the system starts at

the north pole, that is, the coefficient B0 = 1 and the
others Bm = 0(m �= 0). We slowly increase γ from γ = −5
to γ = 5 to see how the Majorana stars travel on the Bloch
sphere. We have done calculations for big N . As there is no
essential difference, our results are only plotted for small
N for the sake of better illustration.

The case N = 3 is plotted in Figure 2. As shown in the
figures, the three stars separate immediately after leaving
the north pole and start to travel on different trajectories.
In the simplest case where there is no interaction c = 0, all
three stars travel straight down to the south pole as shown
in Figure 2a. This situation does not change much as long
as c < v. The critical case c = v is shown in Figure 2b,
which is very similar to Figure 2a. This is quite differ-
ent from the mean-field picture, where there are strong
oscillations before the single star reaching the south pole.

As pointed out in reference [20] and also illustrated in
Figure 1c, the adiabaticity breaks down when the inter-
action is strong enough, that is, c > v. It is interesting
to speculate how this effect will emerge in the picture of
multiple Majorana stars. Two scenarios can happen: (i)
all the stars never reach the south pole or (ii) only some
of the stars never arrive at the south pole. Our calcula-
tions show that the latter is right as shown in Figure 2c.

(a) (b)

(c)

 

(d)

Fig. 3. Majorana representation of the second quantized model
for N = 4. (a) c = 0; (b) c = 0.2; (c) c = 0.6; (d) is the
bottom view from the south pole of (c). Other parameters are
v = 0.2, α = 0.001.

It is clear from the figure that all the stars begin to travel
around latitudinally for many rounds after the departure
from the north pole. However, their eventual fates are dif-
ferent: two of them (red and green) will arrive at the south
pole while one of them never reaches the south pole. The
situation is similar for N = 4 (see Fig. 3) and other values
of N .

As we have shown above, for the second quantized
model, the nonlinear LZ tunneling is now described by
the motions of N Majorana stars on the Bloch sphere.
This reveals a much richer picture of this interesting phe-
nomenon. Now the question is how the motions of these N
Majorana stars correspond to the motion of a single star
in the mean-field description.

4 Correspondence between the mean field
and the second quantized model in Majorana
representation

So far we know that N bosons’ dynamics can be repre-
sented by N Majorana stars moving on the Bloch sphere
in SQM. On the contrary, there is only one star moving
on the sphere in MFM. As the particle number N → ∞,
the system can perfectly described by the MFM. There-
fore, we need to find a way “averaging” these Majorana
stars into one star. Here, we propose a method based on
density matrix to find out the relationship between these
Majorana stars in SQM and the one star in MFM.
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(a) (b)

Fig. 4. The Majorana star orbit for the reduced density matrix
for N = 10 with (a) c = 0; (b) c = 0.2. Other parameters are
v = 0.2 and α = 0.001.

In MFM, a state for double-well BECs can be written
as |Ψmf〉 = cos( θ

2 )|1〉+ sin( θ
2 )eiφ|0〉, and its corresponding

two dimensional density matrix is:

ρmf = |Ψmf〉〈Ψmf |

=
(

cos2( θ
2 ) cos2( θ

2 ) sin2( θ
2 )e−iφ

cos2( θ
2 ) sin2( θ

2 )eiφ sin2( θ
2 )

)
. (7)

For a quantum state |Ψ〉 in SQM, its matrix density ρq =
|Ψq〉〈Ψq| is of (N + 1) dimensions. When we trace out the
degrees of freedom of (N − 1) particles, we get a 2 × 2
reduced matrix,

See equation (8) above.

Since the SQM can be replaced by the MFM when N →
∞, the reduced density matrix ρr can approximate the
Mean-field density matrix ρmf when N is large. The re-
duced density matrix ρr can be represented by a single
Majorana star on the Bloch sphere as the mean-field den-
sity matrix ρmf . To find the spherical coordinates (θ, φ)
of ρr, we use the quantum states of the SQM that we com-
puted in the last section and compute the reduced density
matrix ρr with equation (8). The orbits of the Majorana
star of the reduced density matrix are plotted in Figures 4
and 5.

Figure 4 is for N = 10 with c ≤ v. The trajectories
of the Majorana star in Figure 4 are very similar to what
we see in Figure 1, which is for the mean-field Majorana
star: when c = 0, the Majorana star goes straight from
the north pole to the south pole; when c = v, there are
small oscillations before the star reaches the south pole.
Note that for the multiple Majorana stars in the SQM,
their trajectories do not oscillate as shown in Figures 2b
and 3b.

(a) (b)

(c) (d)

Fig. 5. The Majorana star orbit for the reduced density matrix
for (a) N = 3; (b) N = 5; (c) N = 10; (d) N = 20. Other
parameters are c = 0.4, v = 0.2, and α = 0.001.

The case of c > v is plotted in Figure 5. Just like
the case of c ≤ v, the Majorana star’s orbits are very
similar to their mean-field counterpart. In particular, we
can see from Figure 5 that with the increase of the particle
number N , the Majorana star’s orbits look more similar
to the mean-field trajectory shown in Figure 1c. This is
just what we have expected.

5 Conclusion

In summary, we have investigated the Majorana’s stel-
lar representation of nonlinear Landau-Zener tunneling
in both the mean-field model and the second-quantized
model. The Majorana’s representation provides a very in-
tuitive and geometric way to understand this interesting
phenomenon. We have also established the corresponding
relationship between the one star in the mean-field model
and the Majorana stars in the second-quantized model.
It is interesting in the future to investigate the interac-
tion between Majorana stars with this simple nonlinear
Landau-Zener model.
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