
PHYSICAL REVIEW A 94, 063603 (2016)

Observation of quantum equilibration in dilute Bose gases
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We investigate experimentally the dynamical relaxation of a nonintegrable quantum many-body system to its
equilibrium state. A Bose-Einstein condensate is loaded into the first excited band of an optical lattice and let to
evolve up to a few hundreds of milliseconds. Signs of quantum equilibration are observed. There is a period of
time, roughly 40 ms long, during which both the aspect ratio of the cloud and its momentum distribution remain
constant. In particular, the momentum distribution has a flat top and is not a Gaussian thermal distribution. After
this period, the cloud becomes classical as its momentum distribution becomes Gaussian.
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I. INTRODUCTION

The second law of thermodynamics states that the entropy
of an isolated system never decreases [1]. When applied to
quantum systems, the second law implies that an isolated
quantum system will dynamically relax to an equilibrium
state that has a maximized entropy. Many physicists including
Pauli and Schrödinger had attempted to understand this
law quantum mechanically [2]. Von Neumann was clearly
the most successful as he proved both quantum ergodic
theorem and quantum H-theorem [3,4]. According to these two
theorems, most of the nonintegrable quantum systems, which
are ubiquitous in nature [5], will indeed relax dynamically to an
equilibrium state, where the macroscopic observables fluctuate
only slightly and the entropy is maximized with small fluctu-
ations. These two theorems have now been improved and put
in a more transparent framework and on a firmer footing [6,7].

Experimental observation of the dynamical relaxation of
an isolated quantum system had been almost impossible
since isolated quantum systems are very hard to prepare in
experiments. This situation was changed with the realization
of Bose-Einstein condensation (BEC) in dilute atomic gases
[8]. A BEC in such an experiment has no physical contact with
a heat bath as it is held either in a magnetic or an optical trap.
As demonstrated in interference and vortex experiments [9,10]
and also in our recent experiment [11], a BEC can stay in a
pure quantum state or the BEC can be regarded as an isolated
quantum system up to a few hundred milliseconds. This shows
that it is now experimentally feasible to study the dynamical
relaxation of an isolated quantum system. Such a possibility
has generated a great deal of theoretical interests. Along with
many theoretical works [12–18], there have already been ex-
perimental studies on this issue. However, almost all of the ex-
periments are focused on one-dimensional integrable quantum
systems [19–23]. To the best of our knowledge, the dynamical
relaxation of a nonintegrable quantum system was only studied
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in Refs. [24–26] with the focus on quantum turbulence. As
integrable systems are rare and almost all interacting systems
in nature are nonintegrable [5], it is more important to study
the dynamical relaxation of nonintegrable quantum systems.

In this work we study experimentally the dynamical
relaxation of an isolated nonintegrable quantum system, which
is a BEC loaded into the first excited band of an optical lattice.
The BEC is then allowed to evolve up to 400 ms. The aspect
ratio of the BEC cloud after free expansion is measured, and
found to oscillate initially and then becomes constant during a
time window between roughly 35 ms and 50 ms (see Fig. 1).
For convenience, we refer to this time window as plateau
phase. During the plateau phase, the momentum distribution
of the atomic cloud remains largely unchanged, and has a
flat top such that it cannot be fitted with any known thermal
distribution. This observation strongly indicates that a possible
quantum equilibrium is reached. The length of this plateau
phase is around 40 ms for an optical lattice of 20Er, and it
increases with the strength of optical lattice. After the plateau,
the momentum distribution of the BEC becomes Gaussian-like
and the oscillations in the aspect ratio are resumed with a
frequency that is twice that of the trapping frequency. The
system eventually reaches the classical thermal equilibrium,
where the momentum distribution of the BEC is Gaussian.
The nonintegrability of our system, a BEC in an optical lattice,
is indicated by the dynamical instability found in this system
both theoretically [27,28] and experimentally [29].

The article is organized as follows. In Sec. II, we briefly
describe our experimental setup, and report that the evolution
of our BEC system undergoes three stages. In Sec. III, we
give a detailed description and an analysis of the second stage,
where the quantum equilibrium is reached. In Sec. IV, we
describe the third stage, where the classical thermalization is
finally reached. We conclude in Sec. V.

II. EXPERIMENTAL SETUP

The experimental setup is similar to our previous work [30].
A nearly pure condensate of about 1.5 × 105 87Rb atoms is
obtained in our hybrid optical-magnetic trap whose harmonic
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FIG. 1. (a) Aspect ratios of the atomic cloud at different holding
times with the lattice strength V = 8Er. The TOF image at 50 ms is
shown in the inset to show how the aspect ratio is extracted. Each
point is the average over five experiments and the error bar is the
standard error. The red solid line indicates the plateau during which
the aspect ratio remains constant while the red dashed line shows
the transition period between two stages. (b) The starting (blue) and
ending times (red) of the plateau for different lattice strengths.

trapping frequencies are (ωx,ωy,ωz) = 2π × (28,55,65) Hz.
A one-dimensional optical lattice is formed along the x

direction by retroreflecting a laser beam with wavelength λ =
852nm. The lattice constant is then a = λ/2 = 426 nm. The
lattice depth is expressed in units of recoil energy Er = �

2k2

2m

with k = 2π/λ. The condensate is quickly loaded into the p

band (first excited band) of the optical lattice by using a series
of pulsed optical lattices. The pulses are tens of microseconds
wide and consist of two sets whose lattice sites are shifted in
the x̂ axis by a/4. The details of our method can be found
in Ref. [30]. The condensate prepared in such a way has a
narrow distribution of quasimomentum around q = 0. A lot
of interesting physics has been studied both theoretically and
experimentally for a BEC in the p band [31–35], with a narrow
quasimomentum distribution or fully occupied. In this work
we focus on the dynamical relaxation of a BEC in the p band.

We hold the condensate in the p band for a period of time
t . Then all the potentials are switched off and the atomic cloud
is released. After a 28 ms free expansion, we take the time-of-
flight (TOF) absorption image, which shows the momentum
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FIG. 2. The TOF images (left column) and the corresponding
integrated one-dimensional distribution (right column) at five typical
times: t = 2 ms, t = 40 ms, t = 50 ms, t = 200 ms, and t = 400 ms.
The red dashed lines in the right column are the best thermal
distribution fit. V = 8Er.

distribution of the atomic cloud. TOF images at five typical
holding times are shown in Fig. 2. Initially there are two peaks
at q = ±�k, clearly indicates that the condensate is in the p

band [35]. As the evolution goes on, these two peaks start to
disappear and a central peak with a flat top emerges around
tens of milliseconds, and the distribution stays unchanged for
a period of time, an indication that the quantum equilibrium
is reached. At 200 ms, the momentum distribution becomes
Gaussian-like, a signal of the classical thermal distribution. At
400 ms, we not only observe the thermal distribution but also
the overall cloud shape becomes circular, implying that the
classical thermal equilibrium is reached [24].

We have analyzed the TOF images in detail, and find that the
whole evolution can be divided into three typical stages. There
is an initial oscillation period roughly before 20 ms and this
stage is characterized by the two prominent Bragg peaks and
oscillations in the aspect ratio of the BEC cloud. The detailed
analysis of this stage has been done in our previous work [30].
The second stage follows immediately and we call it plateau
phase. In the plateau phase, the system enters into a stable state,
where all the quantities that we can and have measured remain
almost constant, indicating that a kind equilibrium is reached.
This plateau phase always ends around 50 ms no matter how
strong the optical lattice is (see Fig. 1), which is much shorter
than the decoherence time 125 ms due to the thermal fraction
(details are given later). This means that the atomic cloud is
still in a quantum pure state during this stage and the observed
equilibrium is of quantum nature. After the second stage, the
aspect ratio of the BEC cloud begins to oscillate again but
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with a frequency that is twice the trapping frequency. The
oscillations eventually die out. At the third stage, all the TOF
images can be well fit by a Gaussian function. At this final stage
the system is in a mixed state due to inevitable experimental
noise and finally becomes classically thermalized.

III. QUANTUM EQUILIBRIUM

According to von Neumann [3,4] and others [6,7], a non-
integrable quantum many-body system starting from a well-
behaved pure state, such as a Gaussian wave packet and a Bloch
state, will eventually evolve dynamically into an equilibrium
state, which looks intuitively rather random or irregular. As a
result, there are two stages of dynamical evolution. In the first
stage, which is usually short and characterized by a relaxation
time, the quantum system undergoes a certain type of coherent
dynamics, which will quickly be destroyed by dephasing. To
see this clearly, let us write the dynamics of a quantum system
in its general form

|ψ(t)〉 =
∑

n

cne
−iEnt/� |En〉 , (1)

where |En〉 is the system’s energy eigenstate with eigenenergy
En and coefficient cn determined by the initial condition. For
a nonintegrable quantum system, the structure of its energy
eigenvalues En is very similar to the one of a random matrix
[5]. As a result, the phases e−iEnt/� will quickly be scrambled
as t increases and the dephasing occurs. Such dephasing causes
the quantum system to equilibrate [3,4,6,7]. In this way, the
quantum system enters the second stage, where besides small
fluctuations all the observables become constant.

The above theoretical discussion is for a quantum system
ideally isolated from the environment and the quantum system
is still in a pure state even in the quantum equilibrium stage.
In a real experiment, the quantum system is always coupled
to an environment, which can drive a quantum pure state into
a mixed state. If the coupling is strong, the second quantum
equilibrium stage may never happen as the quantum system
can quickly be driven into a mixed state and becomes classical.
When the coupling is weak, the second stage can survive for
a period of time before entering the third stage, where the
system evolves into a mixed state and eventually equilibrates
classically.

In our experiment, the coupling to the environment is weak
enough that we have indeed observed all the three stages. We
use t1 to denote the transition time that the system goes from
the first to the second stage and t2 the time that the third
stage begins. In the first stage coherent oscillations with decay
amplitude are observed along with other dynamical features.
We have analyzed this stage in detail in Ref. [30]. We shall
concentrate on the second and the third stages.

We first characterize the TOF images of the BEC quantita-
tively using the aspect ratio of the cloud. We calculate, rx and
ry, the full widths at half maximum (FWHM) of the atomic
cloud in the TOF images along the x and y axes, respectively.
The FWHM in each direction is obtained by integrating
the two-dimensional atom distribution in the perpendicular
direction to get a one-dimensional momentum distribution and
then counting pixels with atom number higher than half of the
maximum value. The aspect ratio is then r = rx/ry. We have

FIG. 3. The momentum distribution at the beginning (red solid
line), in the middle (black dotted line), and at the end (blue dashed
line) of the quantum equilibrium plateau for (a) 8Er and (b) 14 Er. The
momentum distribution averaged over the entire equilibrium plateau
is shown in (c) for 8 Er and (d) for 14 Er with solid blue lines while
the thermal fitting is shown with red dashed lines.

plotted how the aspect ratio changes with time for the case of
V = 8Er in Fig. 1(a), where each point is the average over five
experiments with error bars given by the standard deviation.
There is clearly a plateau in this figure during which the aspect
ratio remains largely constant. Note that the ratio of this plateau
is about 3, which is far away from 1, the aspect ratio of a
thermal cloud [see Fig. 2(e1)]. This is one of the indications
that the cloud is still quantum during this plateau phase.

In Fig. 3, we have plotted the momentum distributions at dif-
ferent times of this plateau. To demonstrate that the distribution
changes little over the plateau, the momentum distributions at
the beginning, in the middle, and at the end of the plateau
are shown in Figs. 3(a) and 3(b) for the lattice depths of
8Er and 14Er, respectively. Besides some minor fluctuations,
the distributions at different times are clearly the same. To
reduce the background noise, each line is the average over
five experiments with the same holding time. Furthermore, we
have plotted in Figs. 3(c) and 3(d) the averaged momentum
distribution over the entire plateau for V = 8Er and V = 14Er,
respectively. Similar to the distributions at individual times,
these two averaged distributions have a flat top and cannot be
fitted well with a Gaussian. All these features strongly indicate
that the system has reached a steady state, which can at least
be called quasiequilibrium. Since the momentum distribution
of this state has a rather flat top and cannot be fitted with
the thermal Gaussian distribution, we argue along with other
features that this is quantum equilibrium.

The two transition times t1 and t2 can be extracted. Our
criterion considers both the aspect ratio r and the momentum
distribution. We first determine t1 and t2 by requiring the
aspect ratio r fluctuates less than 10% of the average value.
The average value is also modified when a new point is
included. For lattices with strength bigger than 14Er, the
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criterion is changed to 20% when the time span is longer
than 20 ms, as the fluctuations of the experimental results are
larger for higher lattice depths. Then time t2 is adjusted by
looking into the momentum distribution. For example, in the
case of V = 8Er, we have t1 = 36 ms and t2 = 62 ms by just
considering the fluctuation of r . However, we find that the
momentum distribution begins to change gradually from a flat
top to a Gaussian one starting at t = 52 ms. As a result, we
set t2 = 52 ms, instead of 62 ms. For other lattice depths, this
phenomenon is also existed, and each t2 is roughly reduced by
10 ms after considering this effect.

These two times are plotted in Fig. 1(b) as a function of
lattice strength V with t1 as blue filled squares and t2 as red
open squares. The transition time t1 is seen decreased with the
lattice strength, indicating that the stronger lattice renders the
cloud to quantum equilibrium faster. This is quite reasonable:
If we use the dynamical instability to characterize how strong
the chaos of the system is, it is known in literature that a
BEC in an optical lattice is more chaotic for stronger lattice
[27]. Usually more chaotic systems have shorter relaxation
times.

The other transition time t2 remains almost constant around
52 ms. This observation is also consistent with our basic un-
derstanding. Our experimental system is weakly coupled to an
environment, which includes thermal atoms [39], fluctuations
of laser field [36], and inelastic scattering of photons [37,38].
These noises can eventually destroy the quantumness of the
system and turn it from a pure state to a mixed state. As this
coupling to the environment is insensitive to the details of the
BEC system, one expects that t2 should be independent of the
lattice strength. This is indeed what we have observed.

Overall, we have observed in this stage an equilibrium state.
It is clearly not classical for two reasons: (i) the aspect ratio
is 3 whereas it is 1 for a thermal cloud; (ii) the momentum
distribution has a flat top. We argue that this equilibrium
state is of quantum nature as it exists only for a short time
period and roughly ends at 52 ms. We have estimated the
environmental effects. The fractional thermal cloud dominates,
and the relaxation time due to the thermal collision is about 125
ms [39], which is much longer than t2 ≈ 52 ms. The effects of
laser field fluctuations and the inelastic scattering of photons
would induce a decay on a timescale of several seconds, which
is orders of magnitude longer than t2.

Another strong evidence that our system is still in a pure
quantum state in the second stage comes directly from our
own experiment in Ref. [11]. The experimental setup is the
same. The only difference is that the BEC is loaded into the f

band in Ref. [11], where quantum coherent oscillations similar
to Bloch oscillations were observed up to 60 ms. Quantum
equilibration was not observed in Ref. [11]. The reason is that
the kinetic energy dominates the high bands and the interaction
can be ignored so that the system is integrable.

In literature there are also a great deal of evidence that
the BEC can remain in pure quantum state up to tens of
milliseconds. In Ref. [24], the BEC was shaken up to 60 ms and
quantum turbulence was still observed. The typical lifetime of
a BEC vortex is around 500 ms [10]; this means that the phase
coherence of a BEC can be up to 500 ms.

According to von Neumann [3,4], the equilibrium state we
observed in the second stage is caused by the nonintegra-

bility of the system. Specifically, for our BEC system, the
nonintegrability comes from the interaction between atoms.
The collisions between the atoms can deplete the p band and
render the atoms to the s band and higher bands or lateral
motion. The reverse process can also occur. At the end, these
two processes can balance out and our BEC system reaches
equilibrium.

The details of the quantum dynamical evolution in the
second stage can in principle be described by the many-body
Schrödinger equation. However, at present there is no tractable
way to solve this equation for our system, which is initially
loaded to the q = 0 state of the p band. The mean-field
Gross-Pitaevskii equation can only describe the early moments
of the dynamics before the Ehrenfest time (much shorter than
t1) [40] due to the existence of dynamical instability [28].

IV. CLASSICAL THERMALIZATION

The third stage of the evolution starts around 60 ms,
and is characterized by its Gaussian momentum distribution.
Interestingly, the aspect ratio of the cloud starts to oscillate
again in this stage but with a different frequency. These
oscillations last for a long time until the system eventually
reaches the classical equilibrium around a few hundreds of
milliseconds. As the cloud with ry is roughly constant, the
width rx oscillates in an identical fashion with r . The oscilla-
tions of the aspect ratio r for the case of V = 8Er are shown
in Fig. 4(a). They can be well fitted with slowly decaying sine

t(ms)

r

t(ms)

Δ
r

FIG. 4. (a) Oscillations of the aspect ratio r . The dashed line
is a theoretical fitting. The oscillation frequency is about twice the
trapping frequency along the direction of optical lattice. (b) Decay of
amplitude of the oscillations. The solid line represents an exponential
fit. V = 8Er.
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functions. Through the fitting, we find the oscillation frequency
is ω = 2π × 55.3 ± 0.49 Hz. This is approximately twice
of the trapping frequency ωx = 2π × 28 Hz. This frequency
doubling is independent of the lattice strength.

This oscillation phenomenon is of classical nature and can
be explained as follows. A gas in a harmonic potential can
be regarded as a gas of harmonic oscillators with the same
frequency. As a result, according to the law of equipartition
of energy, its kinetic energy must be equal to its potential
energy at equilibrium. In our experiment, when the quantum
gas loses its coherence and becomes classical at time t2,
it is yet to reach equilibrium with the harmonic trapping
potential. As each atom in the gas oscillates in the trapping
potential, the momentum distribution of this gas will oscillate
accordingly with a doubled frequency. The reason is that after
half of the harmonic oscillation cycle, each atom would change
the direction of its momentum in x̂ axis while maintaining
the magnitude. Due to the symmetry of the system, the
overall momentum distribution would have restored the initial
state.

As the atomic cloud is not ideally isolated in experiments
and the trap is not perfectly harmonic, it will eventually
equilibrate with the trapping potential. This is demonstrated
by the damping of the oscillation amplitude of the aspect
ratio �r as shown in Fig. 4(b). A numerical fitting shows
that the damping follows an exponential form A0e

−t/td with
td = 169.8 ± 28.7 ms. Such a long relaxation time shows that
the system is well isolated and is an indirect indication that
the equilibration observed in the plateau is of quantum nature.

For lattice depth of 8 Er the aspect ratio of the atomic cloud
becomes constant around 400 ms. For a deeper lattice, the
system would reach thermal equilibrium faster.

V. CONCLUSION

In sum, we have studied experimentally the dynamical
relaxation of a nonintegrable quantum system by loading a
BEC into the second band of the optical lattice. By following
its time evolution, we have observed a quantum equilibrium
state, which is characterized by a constant non-Gaussian
momentum distribution. Our study here has presented a
preliminary experimental test of the two fundamental theorems
proved by von Neumann in his pioneering work [3,4]. Much
more is needed in order to clarify many aspects of this
dynamical relaxation. For example, what else can we measure
to characterize the quantum equilibrium? And, ultimately, can
we measure the quantum entropies for quantum pure states
defined by von Neumann [3,4] or in Ref. [7]?
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[23] P. Bordia, H. P. Lüschen, S. S. Hodgman, M. Schreiber, I. Bloch,
and U. Schneider, Phys. Rev. Lett. 116, 140401 (2016).

[24] E. A. L. Henn, J. A. Seman, G. Roati, K. M. F. Magalhães, and
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