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Abstract—We analyze the full set of Bloch wave stationary solutions for a Bose—Einstein condensate in the
Kronig—Penney potential. We investigate the Landau instability and dynamical instability of the Bloch states in
the lowest Bloch band, including the loop if it appears. The stability phase diagrams are shown to be similar as
in the case of the sinusoidal optical lattice potential. We also compute the speed of sound as a function of the
potential strength. The trend is shown to be similar to the sinusoidal case, reflecting our general conclusion that,
in any one-dimensional periodic potential, the sound speed always falls monotonically with increasing potential
strength, no matter whether the atomic interaction is weak or strong. The Kronig—Penney potential, being ana-
lytically tractable and hence more advantageous than the sinusoidal potential, therefore serves as a good model
for understanding the phenomena of Bose—Einstein condensation.
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1. INTRODUCTION

Bose-Einstein condensates (BECs) in periodic
potentials have been the focus of many studies during
the past few years. Ever since the first realization of
Bose-FEinstein condensation of alkali-metal atoms in
1995 [1-3], there have been many intriguing phenom-
ena related to the properties of BECs in periodic poten-
tials, such as superfluidity, dynamical instability [4—
11], Josephson oscillations [12, 13], and Landau—Zener
tunneling [14—18]. Specifically, it has been found that
the interaction between the BEC atoms can deeply
affect the band structure and the instabilities of a BEC
in a periodic potential [10].

So far, considerations have been primarily focused
on BECs in a sinusoidal optical lattice, which is gener-
ated in experiments by the interference of two counter-
propagating laser beams and is therefore composed of
a single Fourier component. However, if more counter-
propagating laser beams of frequencies that are multi-
ples of the fundamental are added, more Fourier com-
ponents would be introduced, and the potential would
hence become a lattice of well-separated peaks. In the
limit that the width of these peaks becomes much
smaller than the lattice period, the potential virtually
becomes a Kronig—Penney potential, i.e., a lattice of
delta functions. An experimental scheme to create
unconventional optical lattices has recently been pro-
posed in [19].

Theoretically, we start by considering the mean field
of a BEC trapped in the Kronig—Penney potential, mod-
eled by the Gross—Pitaevskii (GP) equation [20, 21],
which is also called the nonlinear Schrédinger equation
(NLS) in numerous areas of physics. A full set of Bloch

wave stationary solutions for such a BEC has recently
been found, and the structure of the Bloch bands has
been studied in detail [22]. The Bogoliubov excitations
in such a system have also been investigated [24]. In
our work, we investigate the Landau instability (which
are closely related to superfluidity), the dynamical
instability, and the sound speed of a BEC in the Kro-
nig—Penney potential. We show that the mean-field
Bloch states of a BEC in the Kronig—Penney potential
exhibit not only the same band structure but also the
same properties concerning the instabilities and the
sound speed as in the case of the sinusoidal potential.
Specifically, both the stability phase diagrams and the
functional relationship between the sound speed and
the potential strength are similar in these two cases.
Since the sinusoidal lattice and the Kronig—Penney
potential represent two extreme forms of periodic
potentials, our results show convincingly that the fun-
damental properties of a BEC in a periodic potential do
not depend on the shape of a lattice potential. As a
result, theorists are at liberty to choose the form of a
periodic potential for the convenience of their study.

In the case of the sinusoidal potential, the Bloch
wave solutions can only be found numerically [10]. In
contrast, the Bloch wave solutions to the Kronig—Pen-
ney potential can be described by an analytic expres-
sion in terms of a Jacobi elliptic function [22]. There-
fore, the Kronig—Penney potential offers certain great
advantages over the sinusoidal potential as a theoretical
model in investigating the properties of a BEC in a peri-
odic potential. The study of BECs in the Kronig—Penny
potential therefore becomes highly interesting.

190



INSTABILITIES AND SOUND SPEED 191

Our paper is organized as follows. In Section 2, we
give an overview of the Bloch wave solutions to the
time-independent GP equation and the structure of the
Bloch bands. In Section 3, we investigate the Landau
instability and dynamical instability of the BEC Bloch
states in the lowest Bloch band, including the loop if it
appears. Our results are summarized in the stability
phase diagrams. The speed of sound as a function of the
potential strength is computed in Section 4. The sound
speed always falls monotonically with increasing
potential strength, no matter whether the atomic inter-
action is weak or strong. This is in accordance with our
analytic expression of the sound speed in the weak
potential limit of an arbitrary potential. Finally, in Sec-
tion 5, we summarize the results and discuss their
implications.

2. BLOCK WAVES AND BLOCH BANDS
IN THE KRONIG-PENNEY POTENTIAL

We consider a BEC in the presence of a one-dimen-
sional Kronig—Penney potential,

V(x) = v z 8(x —nd), (1)

n = —oo

in which v characterizes the strength of the potential
and d is the spatial period. The BEC system is quasi-
one-dimensional in the sense that its motion in the
transverse directions is either confined [6] or negligible
[23, 25, 26]. Therefore, the BEC dynamics can be
described in the mean-field theory by the one-dimen-
sional GP or NLS equation:

L 0¥ (x,1)
i 5
2 2 (2)
= (_%% +c|W(x, 0+ V(X))‘P(X, 1),

where WY(x, ¢) is the macroscopic wave function
describing the state of the whole BEC, m is the atomic
mass, and c is the nonlinear coefficient characterizing
the strength of the short-range pairwise interaction
between the BEC atoms.

We seek the stationary solutions of the time-depen-
dent GP Eq. (7). These solutions are determined by the
stationary condition

—ipt/h

Y(x, 1) =e " yx) 3)
and therefore satisfy the time-independent GP equation
nd’
Ty ) + VW) = py), @)
mdx

in which the wave function y(x) describes the nonlinear
eigenstate and L, the nonlinear eigenvalue, is usually
called the chemical potential. The absolute square of
the wave function y(x) is called the density function of
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the BEC atoms and is denoted by p(x). The constraint
of particle number conservation imposes on the wave
function y(x) a normalization condition which, as the
result of the periodicity of the BEC system, can be writ-
ten as

d d
[lwol’dx = [p(x)dx = nyd, 5)
0 0

where n; is the average particle number density of the
BEC over a period.

For convenience, we usually rewrite Egs. (1)—(5) in
the dimensionless form as

Vx) = v i S(x—n), (6)

ot
_ (_%aﬁ-; +elWx ) + V(x))‘I’(x, 0, v
W(x, 1) = e My(x), ®)
%mégﬁ ©)

+cly (0w (x) + V()w(x) = py(x),

1 1
flweolax = fpeodx = 1, (10)
0 0

in which the spatial coordinate x is scaled by the period

d, the wave functions W(x, ) and y(x) by Jn_o , the peri-
odic potential V(x) and the chemical potential i by
md?/h?, the potential strength v by md/h?, the time 7 by
filmd?, and the nonlinear coefficient ¢ by nymd*/h?.

We are interested in Bloch wave stationary solutions
of the form

y(x) = e o,(x), (11)

where k is the Bloch wave number and ¢,(x) has the
same period as the external potential V(x).

A full set of Bloch wave solutions for a BEC in the
Kronig—Penney potential can be found by decomposing
the wave function y(x) into density and phase:

w(x) = Jp(x)e, (12)

where the density function p(x) is nonnegative and the
phase function 0(x) is real. As shown in Eq. (6), the
Kronig—Penney potential V(x) is nonzero only when x
is an integer. In the region 0 < x < 1, therefore, the wave
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Fig. 1. Lowest Bloch bands at v=2 for ¢ =0, 2, 4, and 8.
As the nonlinear coefficient ¢ increases, the Bloch band is
vertically shifted higher and its tip becomes sharper. When
the atomic interaction becomes sufficiently strong (¢ >2v),
a loop appears at the edge of the Brillouin zone.

function y(x) is subject to the time-independent GP
Eq. (9) without the presence of an external potential

1d°
_ i—gi%x_) +ely) y(x) = py(x), (13)

O<x<l.

Inserting Eq. (12) into Eq. (13), we may finally arrive at
the most general form of the solution in the case of no
external potential:

2
p(x) = B+n%sn2(bx+x0|m), O<x<l1, (14

f dx
0(x) = o] —, O<x<l1, (15)
s

where sn is one of the twelve Jacobi elliptic functions
and m, whose range is restricted within [0, 1], denotes
not the atomic mass but the elliptic parameter. In this
general solution, the free variables are the elliptic
parameter m, the translational scaling b, the transla-
tional offset x,, and the density offset B, while the phase
prefactor oo and the chemical potential | are given as
their functions

2
o = B(’%+B)(b2+3c), (16)

= %(bz(l +m)+3Bc). a17)

A brief discussion of the derivation of Eqgs. (14)—(17)
can be found in [27].

We have hitherto ignored the Bloch wave condi-
tion (11). Assuming that the solution given in Egs. (14)
and (15) is but a segment of a Bloch wave stationary
solution of the GP equation with the Kronig—Penney
potential, we get the Bloch wave solution by extending
the wave function y(x), which has been restricted
within (0, 1), onto the whole x axis according to

y(x+n) = ¢"y(x), nelZ, (18)

which is a straightforward corollary of the Bloch wave
condition (11). Equation (13) also gives the Bloch wave
number

1
dx

k=06(1) = o] —, (19)
I

which is functionally dependent on the four free vari-
ables. The effect of the Kronig—Penney potential (6) is
to induce the boundary conditions

lim (p(n+€)—p(n—e)) = 0, (20)
e—0"
Iim (p'(n+e)—p'(n—¢€)) = 4vp(n), 21
e—0"

where 7 is an integer. Combining the boundary condi-
tions with the normalization condition (10) of the wave
function, we reduce the number of free variables from
four to one and therefore determine the full set of Bloch
wave solutions for a BEC in the Kronig—Penney poten-
tial, from which we are able to further compute the
chemical potential i and the Bloch wave number & by
applying Eqs. (17) and (19), respectively. The set of
chemical potentials (k) as a function of the Bloch
wave number then forms the Bloch bands.

As the nonlinear coefficient ¢ is positive in most
experiments, reflecting the fact that the interactions
between the BEC atoms are in most cases repulsive
rather than attractive, we only compute the Bloch wave
solutions of ¢ > 0. We seek to find out how the Bloch
bands change as the nonlinear coefficient ¢ increases,
i.e., as the atomic interaction becomes stronger, at a
fixed potential strength v. The lowest and the second
lowest Bloch bands for several different c at a fixed v
are presented in Figs. 1 and 2, respectively.

We find that the structure of the Bloch bands is
strongly dependent on the strength of the atomic inter-
action. The nonlinear bands are vertically shifted
higher as compared with the linear (noninteracting)
case of c = 0.

The deviation from the linear band structure grows
as the nonlinear coefficient ¢ increases. When the inter-
action between the BEC atoms is sufficiently strong,
the band structure becomes quite different, marked by
the emergence of loops at the edge or the center of the
Brillouin zone. It is shown in our numerical results that
the critical interaction strength for the onset of the
loops, i.e., the minimum nonlinear coefficient for which
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the loops appear in the Bloch bands, is twice the poten-
tial strength v no matter which band is being consid-
ered, the lowest or the higher ones.

3. LANDAU AND DYNAMICAL
INSTABILITIES

The study of the stability of the Bloch states for a
BEC in the presence of a periodic potential is essential.
There are two types of instabilities: the Landau instabil-
ity or energetic instability, for which certain small per-
turbations can lower the energy of the BEC system, and
the dynamical instability, for which certain small devi-
ations from the initial state grow exponentially in the
course of time evolution.

3.1. Superfluidity and Landau Instability

Landau instability is often discussed along with a
very remarkable property of quantum Bose liquids or
gases known as superfluidity, i.e., the ability of a liquid
or gas to flow without friction through capillaries or
other types of tight spaces if its speed is below a critical
value. For this interesting phenomenon, Landau pro-
posed a simple explanation that a quantum current suf-
fers viscosity only when the creation of the elementary
excitations (phonons) of the system can lower its
energy, in which case we say that the system suffers
Landau instability and the superfluidity is therefore
lost.

The same is true for a BEC in the presence of a peri-
odic potential. If a BEC Bloch state remains in a local
energy minimum against all sorts of small perturbations
that break the periodicity of the system, the BEC flow
is a superflow and suffers no viscosity. Otherwise, i.e.,
if certain small perturbations can lower the energy of
the system, the state is an energy saddle point and the
flow suffers Landau instability.

In order to determine whether small perturbations
lower the energy of a given Bloch state, we apply to it
a small perturbation

Y(x) = € (0(x) + 80,(x)). (22)

As a result of the periodicity of the BEC system, the
perturbation ¢,(x) can be decomposed into different

modes e¥i4*;

80.(x) = u(x, @)™ + viE(x, ), (23)

where ¢ is also a kind of Bloch wave number which
labels the perturbation mode and ranges from —7 to 7,
and the perturbation functions u;(x, ¢) and v;(x, g) have
the same period in x as the BEC system. Substituting
the perturbed state (22) into the grand canonical Hamil-
tonian

jd{ (———+V<x))w+ Il -yl }(24)
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Fig. 2. Second lowest Bloch bands at v=2 for ¢ =0, 2, 4,
and ¢ = 8. When the atomic interaction becomes sufficiently
strong (¢ > 2v), a loop appears at the center of the Brillouin
zone.

and neglecting terms of orders higher than two, we find
the criterion on the Landau instability, that the Bloch
wave ¢ (x) is a local energy minimum and therefore
energetically stable if the operator

Plk+q) oy
cof? L(-k+q)

M(q) = (25)

with £(k') defined as

2
LK) = —%(C%C + ik‘) +V(x)+ 2|0 -1 (26)

is positive definite for all -t < ¢ < w. Therefore, the
Landau instability of the Bloch state ¢,(x) is determined
by the eigenvalues A,(q) of the operator M(q).

We resort to numerical calculations to examine
whether the operator M,(q) is positive-definite and
whether the corresponding Bloch state is energetically
stable. The numerical method employed in our case of
the Kronig—Penney potential is the so-called method of
discretization as opposed to the method of Fourier
expansion, which is used to compute the instabilities of
the BEC Bloch states in the sinusoidal potential. The
method of discretization is elaborated in Appendix A in
detail.

Our attention is focused on the Bloch states in the
lowest Bloch band, including the loop if it appears. The
results are summarized in the stability phase diagrams
shown in the panels of Fig. 3, where a wide range of
values of vand c are considered so as to exhibit how the
instabilities change with the two system parameters. As
the results have reflection symmetry in k and g, we only
show the parameter region where they are both positive.

In the shaded (whether light or dark) area of each
panel of Fig. 3, the operator M,(¢g) has one or more neg-
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Fig. 3. Stability phase diagrams of Bloch states of a BEC in
the Kronig—Penney potential. k is the wave number of the
Bloch state and ¢ is the wave number of the perturbation
mode. In the shaded (whether light or dark) area, at least one
of the excitation energies of the perturbation mode is nega-
tive. In the dark shaded area, the perturbation grows expo-
nentially in the course of time evolution.

ative eigenvalues, rendering the corresponding Bloch
state ¢,(x) energetically unstable. If, for a given value of
k, none of the points (k, g) is in the shaded area, i.e., the
vertical line at this k lies completely within the non-
shaded area, then the corresponding Bloch wave ¢.(x)
is a local energy minimum and represents a superflow.
In this sense, the nonshaded area is also called the
superflow region.

For panels (a.1-a.2), (b.1-b.3), and (c.1-c.3) of
Fig. 3, there are no loops appearing in the Bloch bands.
Therefore, the parameter region for these panels is 0 <
k <mand 0 < g <. For the other four panels, i.e., (a.3—
a.4), (b.4), and (c.4), loops do appear, and the range of
k values is therefore enlarged. In each of these four pan-
els, the long-dashed vertical line (——) represents the
bottom of the loop, shown in Fig. 1 as point B at the
edge of the Brillouin zone, the short-dashed vertical
line (--) represents the rightmost edge of the loop,
shown in Fig. 1 as point R, and the right border of the
parameter region represents the top of the loop, shown
in Fig. 1 as point T at the edge of the Brillouin zone.
Therefore, the parameter region between the long-
dashed line and the short-dashed line shows the insta-
bilities of those Bloch states on the loop which are
between point B and R, while the region between the
short-dashed line and the right border shows the insta-
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bilities of the states between point R and point T. Note
also that, in the latter region, the direction of the k axis
is reversed beginning at the Bloch wave number of
point R, which is greater than m, and ending at the
Bloch wave number of the edge of the Brillouin zone
which is exactly m. The instabilities of the Bloch states
on the left half of the loop do not appear in the stability
phase diagram, for they are represented by the right half
as a result of the translation and reflection symmetry in
the Bloch wave number k.

As we see in each column of Fig. 3, the phase
boundary between the superflow region and the shaded
area is strongly dependent on the nonlinear coefficient
c. As the atomic interaction becomes stronger, the
superflow region expands and the shaded area shrinks.
The shaded area may even disappear from the parame-
ter region when ¢ becomes sufficiently large. On the
other hand, the boundary does not depend very much
on the potential strength v as can be seen in each row.

3.2. Dynamical Instability

Assume that a system experiences a small perturba-
tion from its stationary state at a certain initial time. If
in the course of time evolution the deviation remains
bounded, we say that the state is dynamically stable.
Otherwise, i.e., if the deviation grows exponentially
with increasing time ¢, we say that the state is dynami-
cally unstable or chaotic.

The dynamical instability of a BEC Bloch state in
the Kronig—Penney potential can be determined from
the linear stability analysis of the time-dependent GP
Eq. (7). Assume that the Bloch state ¢(x) is slightly
perturbed at an initial time ¢,

W(x, 1) = e M0 (x) + 80,(x, 1), 121, (27)

where, similarly, the deviation d¢,(x, 7) can be decom-
posed into different modes ¢*¢*

80:(x, 1) = uy(x, g, )€™ + viE(x, g, e, (28)

where ¢q is the wave number of the perturbation mode
and the perturbation functions u(x, g, t) and vi(x, g, 1)
are periodic in x. Substituting the perturbed wave func-
tion (27) into the time-dependent GP Eq. (7) and keep-
ing only the linear terms, we arrive at a linear differen-
tial equation describing the dynamical evolution of the
perturbation function u(x, g, f) and vi(x, g, 1):

(29)

where M,(q) is the same operator as defined in Eq. (25)

and
c. = 10 .
0-1
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Fig. 4. Sound speed s of a BEC in the one-dimensional Kronig—Penney potential as a function of the potential strength v.

From Eq. (29), we know that the dynamical instability
of the Bloch state ¢,(x) is determined by the eigenval-
ues €;(q) of the operator 6, M,(g). If its eigenvalues are
all real for any -1t < g < &, the Bloch state is dynami-
cally stable. Otherwise, i.e., if the operator 6,M,(q) has
one or more complex eigenvalues for some value of g,
the state suffers dynamical instability.

The dynamical instability of the Bloch states in the
Kronig—Penney potential are also determined by
numerical calculations and summarized in the stability
phase diagrams of Fig. 3. Again the method of discret-
ization is used.

In the dark shaded area of each panel of Fig. 3, at
least one of the eigenvalues of the operator 6.M;(g) is
complex, rendering the corresponding Bloch state ¢,(x)
dynamically unstable. If the vertical line at a give value
of k stays completely out of the dark shaded area, the
state is dynamically stable. Note that the dark shaded
area lies completely inside the light shaded area, for it
can be shown that the operator M,(q) cannot be posi-
tive-definite if the operator 6.M;(g) has one or more
complex eigenvalues [10].

The dark shaded area is strongly dependent on both
the strength of the atomic interaction and the strength of
the periodic potential. The dark shaded area recedes
toward the right border of the parameter region with
increasing nonlinear coefficient ¢ and widens with
increasing potential strength v.

4. SPEED OF SOUND

It is worth noting that the operator 6,M(q) also
appears in the traditional Bogoliubov approach and its
eigenvalues €,(q) are just the spectrum of Bogoliubov
excitations. It is well known that the Bogoliubov exci-
tation at the long-wavelength limit is phonon-like. In
other words, the excitation energy €,(qg) is linear in g in
the limit |g| — 0. Of course, all these are true only
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when k is sufficiently small. As shown in Fig. 3 the
excitation energy €,(q) can be negative or even imagi-
nary when k is large enough.

For the ground state of the system, which is at k =0,
the slope of the excitation energy €,(g) in the long-
wavelength limit is the speed of sound of the system.
Namely, the speed of sound s of the system can be
defined as

- 1 €y(q)
———= = lim .

q~>0Jr q

3D

We investigate how the sound speed varies in response
to the changes of the strength of the atomic interaction
or of the periodic potential. In particular, we are inter-
ested in the functional relationship between the sound
speed s and the potential strength v for a given nonlin-
ear coefficient ¢ and how their relationship varies for
different values of c. These dependences are shown in
Fig. 4 by our numerical calculations.

As we see in Fig. 4, the sound speed of a BEC in the
Kronig—Penney potential always falls monotonically
with increasing potential strength, no matter whether
the interaction between the BEC atoms is weak or
strong. This is also the case for the sound speed in the
one-dimensional sinusoidal optical lattice [28]. The
same trend in these two different potentials reflects our
general conclusion that, in any one-dimensional peri-
odic potential, the speed of sound s as a function of the
potential strength v has a vanishing slope and a nega-
tive second derivative at v = 0. This conclusion is based
on an analytic expression of the sound speed in the
weak potential limit of an arbitrary potential, which we
find in [29]. In the case of the one-dimensional Kronig—
Penney potential, the analytic expression becomes

o

5 = A/Z{I—VZZ;

2 2.3
n=1(c+n TC)

+ ], (32)
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which is in accurate accordance with the sound speed
graphs in Fig. 4.

5. SUMMARY AND DISCUSSION

We have studied the instabilities and the sound
speed of a BEC in the Kronig—Penney potential. The
full set of Bloch-wave stationary solutions has been
analyzed. We have investigated the Landau instability
and dynamical instability of the Bloch states in the low-
est Bloch band, including the loop if it appears. It has
been shown that the stability phase diagram in the case
of the Kronig—Penney potential is very similar to the
sinusoidal case. We have also computed the speed of
sound as a function of the strength of the one-dimen-
sional Kronig—Penney potential. Our numerical calcu-
lation shows that, as the potential strength increases,
the sound speed always falls monotonically, no matter
whether the interaction between the BEC atoms is weak
or strong. On the other hand, we have found an analytic
formula which describes the functional relationship
between the sound speed and the potential strength in
the weak potential limit. Our numerical and analytical
results are in accurate accordance.

APPENDIX A
METHOD OF DISCRETIZATION

If we use the method of Fourier expansion to com-
pute the eigenvalues of the operators M(g) and 6. M (q)
numerically, we would have to set a cutoff in the Fou-
rier series. However, the cutoff works poorly and incurs
great numerical errors in the case of the Kronig—Penney
potential. The method of discretization is therefore
employed to replace the method of Fourier expansion in
this case.

Our goal is to find an equivalent matrix for the oper-
ator M (gq) or 6,M(g). First, any continuous function
f(x) with period 1, such as the Bloch wave ¢,(x) or the
density function p(x), is discretized into an N X N diag-
onal matrix

fO) 0 0 .. 0
0 f&) 0 ... 0

M= o o f(]%) 0 | @D
R ()

DONG, WU

Any constant C such as the chemical potential |, being
a special periodic function, is also represented by an
N X N diagonal matrix

C00..0
0C0..0

MC)y={ 00C..0 (A2)
000..C

The matrix representation of the Kronig—Penney poten-
tial V(x) cannot be given by Eq. (A1) owing to the dis-
continuity of the delta functions. Instead, the potential
V(x) is discretized into

NO0O..O
000..0

MVY=v| 000..0 (A3)
000..0

It remains to discretize the derivative operators d/dx and
d?/dx*. Their matrix representations are

0 10..-1
-1 01 0
J N
M{z) =3 0100 (A4)
1 00...0
for the first-derivative operator and
-2 1 0 ... 1
e ) 1 -21..0
M) = 0 120 (A5)
dx S
1 00 ..-=2

for the second-derivative operator. It is worth noting
that our discretization keeps the anti-Hermitian prop-
erty of the first-derivative operator d/dx and the Hermi-
tian property of the second-derivative operator d?/dx>.

By applying Egs. (A1)—(AS5), we are able to write
the operator M,(q) or 6.M;(g) as a 2N X 2N matrix and
to compute the eigenvalues of the matrix numerically.
The stability phase diagrams in Fig. 3 are plotted
according to the numerical results obtained when N
takes the value of 200.
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