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Two anomalous monopoles, one of line shape and the other of disk shape, are found to exist in the
semiclassical theory of a two-mode interacting boson system. This is in stark contrast with the quantum
theory of this system, where only point-like monopoles exist. We show that these two anomalous
monopoles have different origins. The line-shaped monopole is formed from the merging of a series
of point-like monopoles while the disk-shaped monopole is the result of the collapsing or bundling of
field lines of Berry curvature due to the existence of the influence of the interaction between bosons. The
relation of these two anomalous monopoles with the famed von Neumann–Wigner theorem is discussed.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Magnetic monopole was first suggested by Dirac as a quanti-
zation condition for electric charge [1]. Although its existence as
a fundamental particle has not been confirmed by experiment,
the monopole has fascinated physicists ever since [2]. Interestingly,
monopoles can arise in a very different context as degeneracy or
diabolical points of energy levels in a parameter space [3–7]. This
is because degeneracy point resembles the magnetic monopole in
two aspects: i) it generates “magnetic” field (i.e., Berry curvature)
in the parameter space; ii) its charge is quantized as Chern num-
ber and is a multiple of 2π [5]. The monopole as degeneracy point
is found to be crucial to understanding some physical effects. For
example, the monopole in the Brillouin zone is found to play a
pivotal role in the anomalous Hall effect [8].

In this work we study the monopoles of a two-mode interact-
ing boson system, which depends on three external parameters.
When the number of bosons N in the system is finite, this sys-
tem can be described by a second-quantized model. In the large
N limit, N → ∞, this boson system can be described alternatively
by a mean-field theory [9,10]. Since the large N limit is also a
semiclassical limit [11], this mean-field model can be regarded as
the semiclassical theory of the second-quantized model. We exam-
ine the monopoles of this boson system with the second-quantized
model for finite N and the mean-field model for the large N limit,
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N → ∞. Our focus is on the ground state and the highest eigen-
state.

Our analysis with the second-quantized model for the case of
finite N shows that the monopoles are point-like objects in the
three-dimensional parameter space. Specifically, for the highest
eigenstate, the system is doubly degenerate at N evenly-spaced
points along a line of fixed length in the parameter space. For
the ground state, there is only one isolated degeneracy point. This
means that we have only one point-like monopole for the ground
state while we have a series of point-like monopoles for the high-
est eigenstates. As we shall show in the text, the monopoles be-
ing point-like in the parameter space is the result of the famed
von Neumann–Wigner (vNW) theorem [12]. This theorem states
that one has to change three parameters in a Hermitian matrix to
achieve double degeneracy and m2 −1 parameters to obtain m-fold
degeneracy.

However, at large N limit, the monopoles for these two eigen-
states are no longer points. Our computation with the mean-field
model shows that the highest eigenstate is degenerate on a line
and the ground state is degenerate on a two-dimensional disk. It
is equivalent to say that the monopoles have become anomalous
with one being line-shaped and the other being disk-shaped (see
Fig. 1). The appearance of these two anomalous monopoles indi-
cates that the vNW theorem may become non-applicable in the
semiclassical limit, N → ∞.

These two anomalous monopoles have very distinct origins.
As noted above, in the case of finite N , the highest eigenstate
has N point-like monopoles on a line of fixed length. The line-
shaped monopole is formed naturally from the merging of these
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Fig. 1. Anomalous monopoles in the semiclassical limit. (a) Line-shaped monopole
for the highest eigenstate; (b) Disk-shaped monopole for the ground state.

N monopoles in the limit of N → ∞. In contrast, the ground state
has only one monopole for any finite N . The appearance of the
disk-shaped monopole in the semiclassical limit is very sudden
and even mysterious at first encounter. After detailed study, we
find that the origin of the disk-shaped monopole is found to be
related to Berry curvature [4]. As Berry curvature can be regarded
as the “magnetic field” generated by the monopole in the param-
eter space [13], we borrow the basic tool in electromagnetism,
field lines, to illustrate the Berry curvature for the ground state.
Our computation with the second-quantized model shows that the
field lines of Berry curvature emanating from the monopole are
curved towards a disk due to the existence of the interaction be-
tween bosons. And the curving of the field lines becomes more
severe as N becomes larger. Eventually, at large N limit, the field
lines completely collapse and bundle into a disk, which is exactly
the anomalous monopole found in the mean-field model. Our fur-
ther analysis shows that the charge is not uniformly distributed
in the monopole disk while its total charge divided by N is kept
at 2π , the Chern number.

Berry curvature is also computed for this system with the
mean-field model and the results are compared to the ones ob-
tained with the second-quantized model. The matching becomes
better as N increases, confirming a semiclassical relation between
quantum and classical two-forms established by Berry [14]. How-
ever, on the monopole disk, the Berry curvature differs significantly
between the semiclassical result and quantum result even in the
large N limit. This shows that the anomalous monopole of disk
shape also indicates a breakdown of the Berry’s semiclassical rela-
tion.

2. Two-mode interacting boson system

The two-mode interacting system of N bosons is described by
the following second-quantized Hamiltonian

ĤN = X

2

(
â†b̂ + âb̂†) + iY

2

(
âb̂† − â†b̂

)

+ Z

2

(
â†â − b̂†b̂

) − λ

4V

(
â†â − b̂†b̂

)2
, (1)

where â†, â and b̂†, b̂ are bosonic operators for two different quan-
tum states, respectively, λ > 0 is the interaction strength between
bosons, and V is the volume of the system. Among the three pa-
rameters, X and Y are couplings between these two modes and
Z is the energy difference between these two modes. This Hamil-
tonian has been widely used in modeling the Bose–Einstein con-
densate in a double-well potential and in other situations where
only two modes are important [9,10]. It also belongs to a class
of Hamiltonians studied in Refs. [6,7] for single molecular mag-
net if we introduce Ĵ x = (â†b̂ + b̂†â)/2, Ĵ y = i(ab+ − a†b)/2, and

Ĵ z = (â†â − b̂†b̂)/2. For molecular magnets, X , Y , and Z represent
three components of a magnetic field.

At large N limit, this boson system becomes “classical” [11]
and can be described by the following mean-field (or semiclas-
sical) Hamiltonian [9,10],

Hs = lim
N→∞

ĤN

N
= X

2

(
a∗b + ab∗) + iY

2

(
ab∗ − a∗b

)

+ Z

2

(|a|2 − |b|2) − c

4

(|a|2 − |b|2)2
, (2)

where a and b are complex amplitudes for the system in the
two quantum modes. c = Nλ/V . The normalization is one, i.e.,
|a|2 + |b|2 = 1. This kind of nonlinear Hamiltonian also appears in
photoassociation systems [15]. For simplicity and without loss of
essence, we focus on the ground state and the highest eigenstate
of this system. Note that large N limit is always taken by keeping
N/V constant.

3. Monopoles for the highest eigenstate

We consider first the highest eigenstate. If the system has N
bosons, its highest eigenstate is doubly degenerate at N evenly-
spaced points along a line of fixed length. These N degener-
ate points are located at {X = 0, Y = 0, Z/c = m/N} with m =
−N + 1,−N + 3, . . . , N − 3, N − 1. At each of these points, the
two degenerate eigenstates are |(N +m + 1)/2, (N −m − 1)/2〉 and
|(N + m − 1)/2, (N − m + 1)/2〉.

As the number of boson N increases, these N monopoles get
closer. Consequently, it is natural to expect that the system be de-
generate on the whole line defined by X = Y = 0 and −c < Z < c
at large N limit. This expectation is confirmed by our computa-
tion with the mean-field model in Eq. (2): the mean-field highest
eigenstate is indeed degenerate on the line. The mean-field highest
eigenstate is given by

|φh〉 ≡
(

a

b

)
=

⎛
⎝ eiϕ

√
c+Z

2c√
c−Z

2c

⎞
⎠ . (3)

In the above, the phase ϕ is arbitrary, indicating degeneracy.

4. Monopoles for the ground state

We now turn to the ground state. When N is finite, the ground
state is doubly degenerate at an isolated point at X = Y = Z = 0.
The two degenerate ground states are |N,0〉 and |0, N〉. So, the
monopole for the ground state is a single point for any finite N .
It appears to suggest that this monopole remain a point even in
the large N limit. However, our computation with the mean-field
model shows otherwise.

With some algebra, the ground state of the mean field model
in Eq. (2) is found to be given by

|φg〉 ≡
(

a

b

)
=

⎛
⎝

√
1−p

2

−
√

1+p
2

X+iY√
X2+Y 2

⎞
⎠ , (4)

where p is the solution of the following equation,

p
√

X2 + Y 2 = (Z + cp)

√
1 − p2. (5)

This equation has one real root when X2 + Y 2 � c2. When X2 +
Y 2 < c2, it has three real roots when |Z | < [c2/3 − (X2 + Y 2)1/3]3/2.
In particular, when Z = 0, two of the three real roots given by
p = ±√

1 − (X2 + Y 2)/c2 have the same energy and are for the
ground states. This means that in the semiclassical description of
the system, the ground state is degenerate on the disk given by
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Fig. 2. Field lines of Berry curvature of the monopole at X = Y = Z = 0 for the ground state. (a) Dashed lines are for N = 2 and solid lines are for N = 10; (b) large N limit
result obtained with the mean-field Hamiltonian. Due to the symmetry around Z -axis, the Y component is omitted. c = 1. The lines in (b) are not straight as they appear.

X2 + Y 2 < c2 and Z = 0. In other words, the whole disk is a
monopole (see Fig. 1(b)).

This anomalous disk-shaped monopole is very surprising. There
appears no indication of the emergence of the disk-shaped mono-
pole at any finite N , where the monopole is always a single point
at X = Y = Z = 0. This asks for further investigation and prompts
us to look into Berry curvature, the “magnetic” field generated by
degeneracy points in the parameter space. As one usually uses
field lines to illustrate a magnetic field in electromagnetism, we
have computed numerically the field lines for “magnetic field” BN

(or Berry curvature) of the monopole at X = Y = Z = 0 and plot-
ted them in Fig. 2(a). For clarity, only the results for N = 2 and
N = 10 are shown. Nevertheless, an interesting trend is clearly
demonstrated: the field lines are curved towards the monopole
disk defined by

√
X2 + Y 2 = c and Z = 0; the curving gets stronger

as N increases. In fact, our numerical results show that the field
lines will collapse and bundle (or converge) into the disk when
N approaches infinity. These results illustrate that the origin of
the disk-shaped monopole is the collapsing (or converging) of field
lines in the semiclassical limit, N → ∞. This is in agreement with
our common knowledge that a magnetic monopole (or an elec-
tric charge) in electromagnetism can be viewed as the converging
point or the emitting source of field lines.

Let us examine this disk-shaped anomalous monopole in de-
tail. Although the semiclassical Hamiltonian Hs is nonlinear, the
Berry curvature B of this monopole can be computed as in a lin-
ear system [16]. That is to compute the curl of the vector potential
A = 〈φg |∇|φg〉 with |φg〉 given in Eq. (4). The Berry curvature B is
found to be

B = p3

2(cp + Z)2(cp3 + Z)
(R + cpẑ), (6)

where R = {X, Y , Z} and ẑ is the unit vector for Z direction. This
result is plotted as field lines in Fig. 2(b). It is apparent that
these semiclassical field lines away from the monopole disk are
very similar to the field lines obtained with the second-quantized
model. Note that B has two different values on the monopole disk
due to the double degeneracy of the ground state. By integrating B
over a closed surface around a small area in the disk, we find that
the “magnetic” charge is not uniformly distributed over the disk.
The charge distribution is

ρ = 1

c
√

c2 − (X2 + Y 2)
. (7)

The integration of this charge density over the whole disk gives us
a Chern number of 2π . So, although the monopole has changed
from a point suddenly to a disk as the semiclassical limit is ap-
proached, the total charge does not change. Note that the total
charge for the monopole in the second-quantized model is 2Nπ .

Berry [14] once established a semiclassical relation between
Berry phase [4] and Hannay’s angle [17,18]. This semiclassical rela-
tion basically says that the two-forms, respectively, for Berry phase
and Hannay’s angle (the two-form for Berry phase is Berry curva-
ture) are the same in the semiclassical limit h̄ → 0. This semi-
classical relation should hold in this interacting boson system. We
define two pairs of conjugate variables, pa = √

ih̄a∗ , qa = √
ih̄a and

pb = √
ih̄b∗ , qb = √

ih̄b for the semiclassical Hamiltonian (2) [19].
The quantization is realized with the following commutators,

[q̂a, p̂a] = [q̂b, p̂b] = ih̄/N. (8)

One can obtain the second-quantized Hamiltonian (1) with the fol-
lowing substitution â = √

N/ih̄q̂a , â† = √
N/ih̄ p̂a and b̂ = √

N/ih̄q̂b ,

b̂† = √
N/ih̄ p̂b . These commutators show that the semiclassical

limit h̄ → 0 is equivalent to N → ∞ for this particular system.
As a result, the semiclassical relation established by Berry [14] for
this boson system is

lim
N→∞ δB = lim

N→∞

(
BN

N
− B

)
= 0. (9)

Our numerical results show that the relation (9) indeed holds
almost everywhere in the parameter space except on the monopole
disk. On the disk, the semiclassical Berry curvature B has a non-
zero ẑ component while the quantum BN always points radially in
the Z = 0 plane. Furthermore, the quantum Berry curvature BN

diverges exponentially with N on the monopole disk while the
in-plane component of the semiclassical B does not. We define
d = |δBl|, where the superscript l denotes the component of the
vector parallel to the XY plane. The difference d is plotted in Fig. 3,
where we see the difference d increases exponentially with N . This
diverging difference shows that the semiclassical relation in Eq. (9)
is broken. Therefore, the disk-shaped monopole also signifies the
breakdown of the Berry’s semiclassical relation between quantum
and classical two-forms [14].

5. Implications for the von Neumann–Wigner theorem

In this section, we discuss the implications of our above re-
sults for the famed von Neumann–Wigner (vNW) theorem [12],
which deals with the problem of how many parameters need to
be changed to achieve certain degeneracy in Hermitian matrices.
We limit our discussion here to double degeneracy since it is the
focus of this Letter. Consider a n × n Hermitian matrix V . It has n2

free parameters that span a n2-dimensional manifold M . This man-
ifold has a submanifold Ms on which the Hermitian matrix V has
at least two identical eigenvalues. The vNW theorem states that
the dimension (or co-dimension) of the submanifold Ms is n2 − 3
(or 3). What does this theorem say about a quantum system whose
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Fig. 3. The difference d = |δBl| as a function of the number of bosons N at a point
on the monopole disk. The inset shows the results for points away from the disk.
c = 1.

Hamiltonian Ĥ(X1, X2, X3) depends on three independent exter-
nal parameters? How often does the system become degenerate as
X1, X2, X3 vary?

Let us consider a quantum system which has a n-dimensional
Hilbert space. In this case, its Hamiltonian can be represented by
a n × n Hermitian matrix V with a set of orthonormal basis. In
this way, the Hamiltonian Ĥ(X1, X2, X3) is a map from the three-
dimensional space spanned by X1, X2, X3 to the n2-dimensional
manifold M for Hermitian matrices. The “independence” between
the three external parameters is to be guaranteed by requiring
that the map be injective. In this way, we have excluded non-
interesting cases such as

V =
(

X1 + X2 + X3 (X1 + X2 + X3)
2

(X1 + X2 + X3)
2 −(X1 + X2 + X3)

)
, (10)

which maps a three-dimensional object into a one-dimensional
object. To ask how often the system becomes degenerate is now
equivalent to ask how the submanifold Ĥ(X1, X2, X3) intersects
with the submanifold Ms for the double degeneracy. It is clear
that if there is intersection, the dimension of this intersection can
be zero ( points), one (lines), two (surfaces), and three. For the
Hamiltonian considered in this work, we have zero-dimensional
intersections (i.e., points). If the vNW theorem were different, say,
it claimed that the co-dimension of Ms is two, then these point-
like intersections (or monopoles) would be impossible. Therefore,
we can say that these point-like monopoles for ĤN are the results
partially due to the vNW theorem. That they become either a line
or a disk at large N limit indicates two different ways in which
the vNW theorem may become non-applicable in the semiclassical
limit.

6. Conclusion

In conclusion, we have found two anomalous monopoles, one
line-shaped and one disk-shaped in a two-mode interacting boson
system. These two anomalous monopoles represent two different
ways in which the von Neumann–Wigner theorem fail in the semi-
classical limit. In addition, the anomalous monopole of disk shape
signals a breakdown of the Berry’s semiclassical relation between
quantum and classical two-forms.

We emphasize that even though these above results are ob-
tained with a specific boson system. The results are expected to
hold in a general interacting boson system. The reason is that our
system is the simplest (or minimal) interacting boson system. This
is analogous to the fact that most essential results with a two-
level system, the simplest quantum system, hold up in a general
quantum system. Our theoretical results can have experimental
consequences. As mentioned at the beginning, the monopole in
the Brillouin zone is found to be responsible for the anomalous
Hall effect [8]. It is possible experimentally to set up to a Bose
Hall system with a BEC in a rotating optical lattice, where the ef-
fect of the anomalous monopole is manifested. Another possibility
is magnetic molecule [6,7], where the monopole may be found to
play a role in the macroscopic quantum tunneling.
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