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Abstract
The extended Bose–Hubbard model for a double-well potential with pair tunneling is studied
through both exact diagonalization and mean field theory (MFT). When pair tunneling is strong
enough, the ground state wavefunction predicted by the MFT is complex and doubly degenerate
while the quantum ground state wavefunction is always real and unique. The time reversal
symmetry is spontaneously broken when the system transfers from the quantum ground state into
one of the mean field ground states upon a small perturbation. As the gap between the lowest two
levels decreases exponentially with particle number, the required perturbation inducing the
spontaneous symmetry breaking (SSB) is infinitesimal for particle number of typical cold atom
systems. The quantum ground state is further analyzed with the Penrose–Onsager criterion, and
is found to be a fragmented condensate. The state also develops the pair correlation and has non-
vanishing pair order parameter instead of the conventional single particle order parameter.
When this model is generalized to optical lattice, a pair superfluid can be generated. The mean
field ground state can be regarded as effective ground state in this simple model. The detailed
computation for this model enables us to offer an in-depth discussion of the relation between
SSB and effective ground state, giving a glimpse on how nonlinearity arises in the SSB of a
quantum system.

Keywords: extended Bose–Hubbard model, effective ground state, pair tunneling

(Some figures may appear in colour only in the online journal)

1. Introduction

The Bose–Hubbard model for a double-well potential has
been extensively studied since the experimental realization of
Bose–Einstein condensate. Rich physics has been explored
with this simple model, including the Josephson effect [1, 2]
and self-trapping phenomenon for the attractive interaction
[3, 4]. Furthermore, this model is a prototype of the Bose–
Hubbard model in periodic potentials, and can offer clues to

phenomenon like superfluid to Mott insulator transition that
occurs in the thermodynamic limit [5]. Due to its simplicity,
one can carry out detailed and systematic studies of this two-
site Bose–Hubbard model and obtain insights into many
intriguing phenomena.

Here we study the Bose–Hubbard model for a double-
well potential with pair tunneling, and show how the strong
pair tunneling can change the underlying physics. (i) When
the pair tunneling effect is strong enough, the mean field
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ground state becomes doubly degenerate and each breaks the
time reversal symmetry. In contrast, the wavefunction of the
quantum ground state is always real and unique. Actually, the
quantum wave wavefunction has large and equal overlap with
both mean field wavefucntions. This is an analog of the
NOON state in the phase space [6]. (ii) The model shows a
general feature of a class of spontaneous symmetry breaking
(SSB): the quantum ground state is unique while the effective
(or mean field) ground state is degenerate. The onset of
degeneracy in the effective ground state is accompanied by
the appearance of quasi-degeneracy in the lowest quantum
energy levels, where the energy gap decreases exponentially
with particle number. The quantum ground state is unstable
against small perturbations which mix up these quasi-
degenerate levels. In experiments we always observe the
effective ground state instead of the quantum one. Once one
symmetry breaking state is chosen, the system needs an
infinitely long time to restore the symmetry in the thermo-
dynamic limit. (iii) The quantum ground state of this model is
a fragmented condensate, corresponding to the superposition
of two coherent simple condensates. It can be characterized
by a pair order parameter instead of the single particle
parameter. The extended Bose–Hubbard model can be gen-
eralized to optical lattice; in this case a pair superfluid [7, 8]
can be generated by a certain perturbation.

In many condensed matter systems the quantum ground
state cannot be observed in experiments. What is observed is
the effective ground state whose energy is almost identical to
its quantum counterpart while whose wave function has a
finite difference from its quantum counterpart [9, 10]. The
mean field ground states discussed here are the effective
ground states. This simple Hubbard model allows us to offer a
detailed comparison between the quantum ground state and
the effective ground state, and discuss SSB in the perspective
of effective ground state. We observe that there are two types
of SSB: (i) the quantum ground state is degenerate; (ii) the
quantum ground state is unique while the effective ground
state is degenerate. The second type can be further divided
into two subgroups according to the origin of the degeneracy.
This may offer a fresh perspective into a question asked by
Wen on a website, ‘what is spontaneous symmetry breaking
in QUANTUM systems?’ [11].

2. Ground state of the model

The extended Bose–Hubbard model for a double-well
potential can be described by the following Hamiltonian [12–
14],
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with a aˆ ( ˆ)† and b bˆ ( ˆ)
†

being the creation (annihilation)

operators in well a (b). t is the usual single particle tunneling,
U0 is the usual onsite interaction, and U U U, ,1 2 3 describe the
off-site interaction. Specifically, U1 and U2 are the inter-well
particle interaction, and U3 is the density-dependent tunnel-
ing. All these terms show up naturally provided that one
expands the field operator in terms of the Wannier basis and
preserves all the terms. In the standard Bose–Hubbard model,
the terms involving U U U, ,1 2 3 are all neglected, as they are
small compared with the hopping energy and the onsite
interaction. Here the inter-well particle interaction (the last
term in equation (1)) serves as an effective pair tunneling,
which is the focus of this work. For ultracold dilute gases with
short range interaction, the contact interaction captures the

essential physics, so we assume δ− = −π
V r r r r( ) ( )

a

m1 2
4

1 2
s

2

,
as being the s-wave scattering length, and thus =U U1 2.

Below the transition temperature and for large particle
number, the quantum model can be approximated by the
mean field theory (MFT). By replacing the creation and
annihilation operators with complex numbers, one obtains the
MFT Hamiltonian,

= − + + + +( ) ( )H J a b ab w a b w a b a b* * * * , (2)1
2 2

2
2 2 2 2

where = − −J t N U( 1) 3, = −w U U N(2 )1 1 0 , =w NU 22 1 .
The ground state of this mean field Hamiltonian has been
studied in [15]. It is convenient to introduce a pair of cano-
nically conjugate variables, θ θ θ= −b a and = ∣ ∣ − ∣ ∣s b a2 2,
with = ∣ ∣ θa a ei a, = ∣ ∣ θb b ei b. We focus on the repulsive
interaction case and tune the ratio between pair tunneling and
single particle tunneling, λ = w2/J. In the weak pair tunneling
regime, λ< <0 1

2
, the ground state is the fixed point (s,

θ) = (0, 0), which has equal population and zero relative phase
between the two wells. In the strong pair tunneling regime,
λ > 1

2
, the ground state becomes two-fold degenerate with

θ = ±
λ( )( )s( , ) 0, arccos 1

2
, which has zero population

imbalance but nonzero relative phase between the two wells.
The transition between these two scenarios occurs at the
critical value λc = 1/2. In the discussion above, we assume
that one can artificially tune λ, and postpone the discussion of
the experimental realization of such tuning to section 5.

Our interest is in the connection between the quantum
and mean field ground states. The quantum ground state can
be obtained by diagonalizing the quantum Hamiltonian
equation (1). In contrast to the mean field results, the quantum
ground state is always real and non-degenerate no matter how
strong the pair tunneling is. To elucidate and understand this
subtle discrepancy, it is helpful to observe that the mean field

ground state is actually the coherent state + ∣ 〉aa bb( ˆ ˆ ) 0N† †
in

the second quantized language. This allows us to calculate the
inner product f(s, θ) between the quantum ground state and
the classical one. In usual cases without pair tunneling effect
or weak pair tunneling regime, the inner product f(s, θ) is a
function with its single peak located at (s, θ) = (0, 0) and its
width related to the quantum fluctuations caused by interac-
tion. In the strong pair tunneling regime, the classical ground
state becomes two degenerate fixed points Θ λ±(0, ( )), and

2
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consequently f(s, θ) has two peaks located at those two fixed
points. This is illustrated in figure 1, where θ∣ ∣f s( , ) is plotted
for a specific set of parameters, N = 40, U0/J = 0.5,

=U U 0.021 0 (λ = 0.2), and 0.2 (λ = 2).
Actually this state is the phase space analog of the self-

trapping effect in a double-well potential for attractive particle
interaction [3, 4, 16, 17]. The self-trapping effect occurs when
the attraction between particles is strong enough, and then
MFT predicts that all the particles will spontaneously occupy
only one well, breaking the symmetry of the double-well
potential explicitly. The quantum ground state is known as the
NOON state, an equal superposition of particles occupying
both wells, which in fact restores the symmetry. Here in our
model MFT also gives two degenerate states breaking the
symmetry of the potential, and the quantum ground state can
be called the NOON state in the phase space.

3. Effective ground state and SSB

Our numerical solution of the quantum model shows when
the mean field ground state becomes degenerate, the quantum
energy levels exhibit the feature of quasi-degeneracy, where
the energy gap between the lowest two states decreases
exponentially with particle number (see figure 2). The quasi-
degeneracy indicates that the quantum ground state is
unstable; very small perturbation will mix up the quasi-
degenerate states. For a typical cold atomic system with
particle number up to ∼10 105 6, an infinitesimal perturbation
will drive the system into one of the degenerate effective
ground states.

The effective ground state is associated with the experi-
mental observability of a ground state. As there is always all
kinds of noise in experiments, what is observed experimen-
tally may not be the true ground state of the system, but the
effective one. A well-known example is the gas to solid phase
transition in free space [9, 10]. Since the center of mass
momentum of the particles commutes with the whole

Hamiltonian, the absolute ground state should be the eigen-
state of center of mass momentum, namely, particles should
be distributed homogeneously in the whole space. However,
in the real world we always observe a localized solid. This is
because the exact ground state is unstable against infinitesi-
mal perturbation in the thermodynamic limit, and it will
spontaneously decay into a symmetry-breaking effective
ground state. The quantum time crystal [18] proposed by
Wilczek is also such an effective ground state, whose exis-
tence needs the breaking of both translational and time
reversal symmetries.

Suppose that we prepare one effective ground state. Since
it is not the true ground state of the system, it will evolve
under the quantum Hamiltonian. This process also determines
the lifetime of the effective ground state observed in experi-
ments. For this model, we find that the effective ground state
evolves almost periodically with the period T as illustrated in
figure 3. As the energy gap Δ between the first excited state
and the ground state decreases with particle number N as
Δ ∼ −Nexp ( ), we have π Δ∼ ∼T N2 exp ( ). So for large
particle number, the evolution period is remarkably long, then
the system will always stay in the effective ground state
during the course of experiments.

It should be emphasized that, in the discussion above,
we always assume the particle number to be large enough
for the conclusion to be valid. For systems of small particle
number, e.g., ≲20, the ground state observed in experiments
may indeed be the quantum state, not the mean-field one.
That is to say, there should be a crossover from the quantum

Figure 1. The inner product of the quantum ground state and the
mean field ground state θ∣ ∣f s( , ) . (a) Weak pair tunneling regime:

=U U 0.021 0 and λ = <0.2 1
2
. The mean field ground state is non-

degenerate and θ∣ ∣f s( , ) has only one peak. (b) Strong pair tunneling
regime: =U U 0.21 0 and λ = >2 1

2
. The mean field ground state is

two-fold degenerate and θ∣ ∣f s( , ) has two peaks.
Figure 2. (a) The lowest 10 energy levels, rescaled with respect to J,
as a function of pair tunneling strength, rescaled with respect to the
critical strength λc. The energy spectrum shows quasi-degeneracy for
strong pair tunneling. Particle number N = 50. (b) The energy gap Δ
between the lowest two states as a function of particle number N at
weak pair tunneling strength λ λ = 0.2c (marked by an open circle
near the left-lower corner in (a)). Δ increases with N before
saturation. (c) Δlog ( ) as a function of particle number N at strong
pair tunneling strength λ λ = 4c (marked by the other open circle in
(a)). Δ decreases exponentially with N when the pair tunneling is
strong.
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ground state to the effective ground state as the particle
number increases. The particle number in the crossover
region depends crucially on the form and strength of
external perturbations. As a specific example, we simulate
the experiment by adding a small perturbation to the single
particle tunneling term, that is, changing J to δσ+J y. δ is
many orders of magnitude smaller than J and σy is the Pauli
matrix. Such a perturbation can originate from the single
particle hopping of charged particles under external mag-
netic field or neutral particles under some artificial gauge
field. We characterize the quantumness of the observed state
in experiments by the overlap between the quantum ground
state under the perturbation and the one without perturba-
tion. If the overlap is one, the observed state is fully
quantum. The simulation results are shown in figure 4 for a
set of parameters of typical values. Under both strengths of
perturbations, the observed states gradually evolve from the

quantum state to the classical one with the increase of
particle number. Besides, the weaker the perturbation is, the
larger particle number we need to observe the effective
ground state in experiments. Note that the quantumness of
the observed state exhibits some oscillations in the cross-
over region for weak perturbation. This is due to the
oscillation of the lowest energy gap with the oddness and
evenness of particle number. For small particle number, the
energy gap is much smaller for odd particle number as there
is an additional symmetry or quasi-degeneracy with respect
to the distribution of particle number in the two wells.

We have already stated many times that for these boson
systems, the mean-field ground state is just the effective
ground state. The above calculations, in particular the results
in figure 4, show convincingly that this is indeed the case for
this simple Bose–Hubbard model. However, it is not well
understood why the mean-field ground state is the effective
ground state for boson systems. There are many indications,
for example, the mean-field Gross–Pitaevskii equation has
been able to explain many Bose–Einstein condensate
experiments.

From this simple model, we see clearly that the two
fundamental concepts, SSB and effective ground state, are
closely related. We take this opportunity to discuss their
relation. In the perspective of effective ground state, there are
two different types of SSB. In the first type, the quantum
ground state is degenerate; therefore, the effective ground
state is also degenerate. At low temperatures, the system falls
into one of the quantum degenerate states, breaking the
symmetry. The well-known ferromagnetic ground state falls
into this category.

In the second type of SSB, the quantum ground state is
unique while the effective ground state is degenerate. In these
systems, the degeneracy of the effective ground states arises
from the quasi-degeneracy of the quantum energy levels: tiny
perturbation can mix up these quasi-degenerate quantum
states and generate these degenerate effective ground states,
which are observed in experiments. Interestingly, this cate-
gory can be further divided into two subgroups as the quasi-
degeneracy has two different origins: (i) the quasi-degeneracy
of the quantum energy levels is caused by the large volume
size of the system. The gas–solid transition mentioned above
[9, 10] and the Bose–Einstein condensation of ideal gas [19]
are typical examples of this case. The degree of degeneracy in
this subgroup is usually infinite. (ii) The quasi-degeneracy of
the quantum energy levels is due to the interaction in the
system. For systems in this subgroup, the energy gap usually
decreases exponentially with particle number. Our model
belongs to this subgroup along with many other systems
reported elsewhere [20–24].

SSB is a familiar and well-studied concept in condensed
matter physics. However, it is still not fully understood. Wen
recently asked, ‘what is spontaneous symmetry breaking in
QUANTUM systems?’ on a website [11]. This question
highlights a dilemma that we all face: on the one hand, SSB
can only happen for nonlinear systems; on the other hand,
quantum systems are always linear. The connection between
SSB and effective ground state that we have shown here may

Figure 3. Evolution of one of the two effective ground states under
the quantum Hamiltonian in the strong pair tunneling regime. N = 50
and λ λ = 20c . The color bar, axis ticks and labels are the same as
figure 1.

Figure 4. Evolution of the quantumness of the experimentally
observed states with particle number in the strong pair tunneling
regime for two strengths of perturbations: (a) δ = −J 10 4, (b)
δ = −J 10 7. Here we choose =U J 0.50 , and =U U 0.41 0 . The
quantumness of a state is defined as its overlap with the exact
quantum state without perturbations. When the particle number is
very small, the energy gap is large compared to the external
perturbation, so the perturbation does not change the state too much.
In this case the quantumness is almost 1. When the particle number
gets larger, the energy gap becomes smaller compared to perturba-
tion, so the perturbation mixes up the quantum states and the resulted
one is classical. For a classical state, its quantumness is not zero but
around 0.7 by this definition.
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provide a fresh perspective into this issue: nonlinearity nee-
ded for SSB is rooted in the degeneracy (or quasi-degeneracy)
of quantum energy levels.

4. Fragmentation and pair order parameter

As our system is an interacting boson system, we use the
Penrose–Onsager criterion [25] to further analyze its quantum
ground state. The condensate fraction is given by ni/N, where
N is the total particle number and ni are the eigenvalues of the
reduced single particle density matrix. In lattice models,
ρ = 〈 〉i j a a( , ) ˆ ˆi j1

† . Here for the double-well potential, we have

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

〈 〉 〈 〉
〈 〉 〈 〉

ρ =
a a a b

b a b b

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ
. (3)1

† †

† †

As shown in figure 5(a), for strong pair tunneling, both of the
condensate fractions are nonzero for large N. So, the system is
in fact a fragmented condensate. This is consistent with the
result in [13, 14] within the parameters that overlap. Those
authors found that the fragmented condensate is stable against
various perturbations. Here we have shown that the frag-
mented condensate is unstable under perturbations that break
time reversal symmetry.

The fragmentation of the quantum ground state corre-
sponds to the degeneracy of mean field ground state. This is a
general relation that is also present in other fragmented sys-
tems. For example, in the antiferromagnetic ground state of
spin-1 Bose gases [26–28], the quantum ground state is
unique while its effective ground state has infinite degeneracy
due to the intrinsic SU(2) symmetry. Thus the quantum

ground state also corresponds to a fragmented condensate.
Fragmented condensate is usually unstable against perturba-
tions that breaks the symmetry and will evolve into one
simple condensate, which is one of the effective ground
states.

Distinct to the Bose–Hubbard model previously studied,
one can define two kinds of order parameters for the quantum
ground state in this model. One is the ordinary single particle
order parameter 〈 〉â , and the other is the pair order parameter
〈 〉aaˆ ˆ . Both order parameters change with pair tunneling
strength (figure 5(b)). One immediately sees that in the strong
pair tunneling limit, the single particle order parameter 〈 〉â
almost vanishes, while the pair order parameter 〈 〉aaˆ ˆ
approaches a saturation value −N/2. This behavior indicates
that for strong pair tunneling the condensate is no longer the
usual single particle condensate, but a pair condensate. The
pair order parameter changes sign during the increase of pair
tunneling strength as a result of minimization of the pair
tunneling energy. By tuning the ratio of pair tunneling to
single particle tunneling, the system experiences a quantum
phase transition from the single particle condensate to the pair
condensate.

The pair condensate defined in this way can be extended
into the case of optical lattice with periodic boundary con-
dition, where a pair superfluid can be defined similarly. In
this lattice system, the quantum ground state is still unique
while the mean field one becomes hugely degenerate due to
the large quasi-degeneracy in the quantum energy levels.
From the analysis of the double-well model, it is clear that
this pair superfluid is unstable and may decay into one of the
mean field ground states, which is a simple superfluid.
Among all the mean field ground states, two of them are of
special interest. Denote the phase difference between two
neighboring wells as θ± , and then there are states with con-
secutive +θ or −θ phase accumulation between neighboring
wells, satisfying Lθ = 2qπ (L is the number of wells, and q is
the winding number of order parameter). They correspond to
superfluids flowing clockwisely or counter-clockwisely. Thus
these two ground states carry nonzero mass current, which is
unconventional.

Note that the meaning of the pair superfluid here is dif-
ferent from that defined in BCS pairing or boson dimer for
attractive interaction [29–34]. As the pair superfluid resides in
the repulsive interaction regime, no bound state or dimer is
formed here. Similar order parameter also exists elsewhere
[24], where a trion superfluid is defined.

5. Experimental realization

We now turn to the experimental method of tuning the ratio
between pair tunneling and single particle tunneling. It is
worth noting that recently there has been an experiment which
observed the density-dependent tunneling term in a one-
dimensional optical lattice [35]. Although our result above is
based on the study of a double well potential, it can be easily
generalized to the case of optical lattice. We will take the case
of optical lattice as an example to illustrate our experimental

Figure 5. (a) Two fragmented condensate fractions of the quantum
ground state as a function of pair tunneling strength. N = 50. (b)
Order parameter 〈 〉â (blue solid line) and pair order parameter 〈 〉aaˆ ˆ
(red dashed line) as a function of pair tunneling strength for the
quantum ground state. They are rescaled with respect to N 2 and
N/2, respectively. N = 50.
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scheme. For the convenience of following discussion, we split
the original Hamiltonian for an optical lattice into three parts,
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∑

∑ ∑

= − − + − +

+ +

+ − + +
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2 † †
1 1 1

†
1

†

0
1 2 1

tun
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where Ĥtun
1
, Ĥtun

2
and Ĥint denote the single particle tunneling,

pair tunneling and the interaction terms, respectively.
For usual systems, the pair tunneling is much weaker

than the single particle tunneling, but their ratio can be tuned
experimentally with the method of shaking the optical lattice
[36–39]. The idea is to renormalize the tunneling matrix
element by adding a periodically oscillating linear force to the
original system. Such a method has been utilized to tune the
single particle tunneling in previous experiments. In actual
fact, it can also be used to tune the pair tunneling strength, as
will be demonstrated below. Assume the added linear force
has frequency ω and amplitude K, then the Hamiltonian of the
optical lattice after shaking becomes

∑ω= +H t H K t jnˆ ( ) ˆ cos ( ) ˆ , (5)
j

j0

where Ĥ0 is the original Hamiltonian before shaking the lat-
tice and n̂ j is the particle number operator on site j.

Since the Hamiltonian is periodic in time with period
π ω=T 2 , according to the quantum Floquet theory [40], the

solution of the periodically driven Schrödinger equation has
the form ψ ε∣ 〉 = ∣ 〉 × − t u t t( ) ( ) exp ( i )n n n , where
∣ 〉 = ∣ + 〉u t u t T( ) ( )n n and it satisfies the eigenvalue equation

⎡⎣ ⎤⎦ ε− ∂ =( ) ( ) ( )H t u t u tˆ i , (6)t n n n

with εn being the quasienergies. In general, ∣ 〉u t( )n can be
obtained by expansion in terms of the basis ωm texp (i ). By
diagonalizing equation (6), one can find the Floquet functions
∣ 〉u t( )n and quasienergies εn.

Define the time-average inner product by

∫=
T

t· ·
1

d · · , (7)
T

0

where 〈 ∣ 〉· · is the ordinary inner product. Then in the Floquet
basis
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with ∣ 〉n{ }j denoting the Fock state with nj particles on the jth

site, the matrix element of equation (6) reads,
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where s = 1 (−1) for single particle tunneling from site j to
j + 1 (j + 1 to j), and p = 1 (−1) for pair tunneling from site j to
j + 1 (j + 1 to j).  x( )n is the nth order Bessel function of the
first kind, given by the definition

 ∫π
τ=

π
τ τ− −x( )

1

2
e d . (10)n

n x

0

2
i( sin( ))

Matrix (9) has a block structure with respect to m, and in
the case of high driving frequencies ω ≫ J Umax { , }i i , the
coupling between different blocks can be neglected, so we
only restrict to the block m = 0. Here the total single particle
tunneling term Ji is defined as = − + −+J t U n n( 1)i i i3 1 ,
with ni being the occupation number of site i. Then one can
see that the original single particle tunneling matrix element is
now replaced by  ω= J J K( ( ))ieff

1
0 [41], and the pair tun-

neling matrix element is replaced by  ω= J U K(2 ( ))eff
2

2 0 ,
respectively. So in the case of high driving frequencies, by
restricting only to the block m = 0, the basis ∣ 〉n{ }j satisfy a
time-independent Bose–Hubbard Hamiltonian with effective
tunneling matrix elements Jeff

1 and Jeff
2 , up to an overall phase

factor ⎡⎣ ⎤⎦ω− ∑
ω t jnexp i sin ( )K

j j in time. Since the modula-

tion of single particle tunneling and pair tunneling matrix
elements depends on different functions, the ratio between the
two tunneling matrix elements can be tuned by adjusting the
driving frequency ω and the force strength K.

6. Conclusion

In summary, we have investigated both the quantum and
mean field ground states of the extended Bose–Hubbard
model for a double-well potential with pair tunneling. Firstly,
we find that when the pair tunneling is strong enough, the
mean field ground state of the system becomes complex and
two-fold degenerate, while the quantum counterpart is always
real and unique. The quantum ground state can be regarded as
a superposition of two mean field states. Secondly, we have
also discussed SSB in the perspective of effective ground
state. The model serves as an example where the true ground
state (quantum ground state) is quite different from the
effective ground state (mean field ground state) that we really
observe in experiments. We show that the degeneracy of the
effective ground state is closely related to SSB, the quasi-
degeneracy of the quantum spectrum and the stability of the
quantum ground state. For large particle number, the quantum
ground state is very sensitive to infinitesimal perturbations
breaking the time reversal symmetry, resulting in one sym-
metry breaking effective ground state. Finally, we find that in
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the strong pair tunneling limit, the quantum ground state in
fact corresponds to a fragmented condensate. In terms of the
defined pair order parameter, it is also a pair condensate. We
then propose an experimental scheme to tune the pair tun-
neling strength, and the conclusion drawn here can be tested
within the current experimental techniques.
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