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Stability of p-orbital Bose-Einstein condensates in optical checkerboard and square lattices
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We investigate p-orbital Bose-Einstein condensates in both the square and checkerboard lattice by numerically
solving the Gross-Pitaevskii equation. The periodic potential for the latter lattice is taken exactly from the
recent experiment [Nature Phys. 7, 147 (2011)]. It is confirmed that the staggered orbital-current state is the
lowest-energy state in the p band. Our numerical calculation further reveals that for both lattices the staggered
p-orbital state suffers Landau instability but the situation is remarkably different for dynamical instability. A
dynamically stable parameter region is found for the checkerboard lattice, but not for the square.
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I. INTRODUCTION

Orbital physics is important in solid-state material due to
its key role in understanding many interesting phenomena
including metal-insulator transition, unconventional supercon-
ductivity, and colossal magnetoresistance [1]. However, to
fully understand the role of orbital degree of freedom in real
solid materials is challenging because of their complex nature.
A quantum degenerate gas in the optical lattice [2,3], which
is disorder free and highly tunable, is an ideal platform to
explore high orbital physics as the orbital degree of freedom
in such an ultracold gas is separate from spin and charge
freedom automatically. Moreover, a system of neutral bosons
loaded into an optical lattice at low enough temperature has
no counterpart in real quantum materials. Bosonic atoms can
condensate into non-ground state, opening the possibility to
explore physics that previously might have seemed academic
or impossible, e.g., the time-reversal symmetry breaking
superfluidity in the nodal p band [4–6].

Several experimental methods have been developed to
populate the p and higher orbital bands in optical lattices
[7–16]. Pioneering experiments have been carried out by accel-
erating the lattice [7], dynamically deforming the double-well
potentials as a single-site manipulation [8–11], and exciting
atoms into the higher vibrational state along a controlled
lattice direction through stimulated Raman transitions [12].
The recent implementation of orbital degrees of freedom in
checkerboard [13–15] and hexagonal [16] optical lattices truly
opens an era of exploring orbital phases of quantum matter that
have no prior analogues in solid-state materials. For example,
the experiments of Ölschlärger et al. [13–15] show that bosonic
atoms are loaded and kept in the excited p-orbital bands for
nearly as long as the ultracold gases can be, thus effectively
possessing infinite long lifetime in the scale of tunneling. In
the experiment, atoms are transferred from the s-orbital band
to the p-orbital band through the changing of the double-well
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relative depth, the time of flight images have illustrated the
macroscopic occupation in the p-orbital real state and complex
state. The same group also reported the observation of the
exotic d- and f -band superfluid phases [14,15]. Dynamically,
fermionic and bosonic atoms are made across from lower to
high orbital bands in optical honeycomb [17] and checkerboard
[15] lattices, respectively.

Although the experiments are done with continuous optical
potential of periodic oscillation, most of the past theoretical
work employed the standard tight-binding method and ap-
proximated the system to a lattice model, where the atoms are
strictly constrained to the p orbital. Many interesting results
have been worked out, such as the staggered state as the ground
state in the p-orbital band [5], superfluid transition to Mott
phase [4,18,19], supersolid quantum phase [20], and quantum
strip ordering in triangular lattices [21] (for other interesting
studies and a brief perspective, see, for example, Ref. [22]). In
this work, we use the continuous model where little theoretical
work has been done besides a variational computation of the
lowest energy in the p-orbital band [23]. The continuous model
provides a better and complete description of the system as
it can capture the decay to the s band that happens in real
experiments and applies beyond tight-binding approximation.
We focus on the stability of the p-orbital state, which is crucial
to understand the p-band superfluidity. To understand the
superfluidity in the s band, stability of the Bloch states in the
s band has been analyzed theoretically for different lattices—
one-dimensional lattices [24], two-dimensional square lattices
[25], and two-dimensional double-well lattices [26]. It was
also investigated experimentally for a one-dimensional lattice
[27]. However, for the p-orbital system, to the best of our
knowledge, only one paper [28] discussed the dynamical
instability and it is limited to the one-dimensional case.

In this paper, with the Gross-Pitaevskii (GP) equation,
we calculate exactly the p-orbital band ground state for
both the two-dimensional (2D) square optical lattice and the
checkerboard lattice used in the experiment [13]. We confirm
that the lowest-energy state in the p band is the staggered
state found in Ref. [5]. The Landau instability and dynamical
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instability of this state are investigated. For the lattice model
approach, such a study of stability is not accurate because the
s band is always removed from the Hamiltonian to make the
condensate impossible to decay. Our calculation shows that,
for both periodic potentials, the staggered state always has
Landau instability as the state is a local saddle point that can
decay into the s band. For the dynamical stability, these two 2D
lattices are very different: our numerical search does not find
any parameter region for the square lattice, where the staggered
state is dynamically stable; in contrast, there exists a parameter
region for the checkerboard potential where the staggered state
is dynamically stable. This is consistent with the intuitive
understanding that the checkerboard potential offers better
stability [29]. That is, on general ground, the checkerboard
potential may be viewed as a particular configuration of
the simple double-well lattice potential, and the energy gap
between the lowest s and the first excited p orbital bands
is much smaller than that between the p and the higher
excited bands. Consequently, the first-order decay of atoms
in the p band due to scattering for the checkerboard lattice is
suppressed by energy conservation according to Fermi golden
rule, in contrast with the decay for the square lattice of single
wells where band spacings are approximately equal in the
tight-binding (i.e., the simple harmonic oscillator) limit.

The paper is organized in the following way. In Sec. II,
the general theoretical framework of our calculation is given.
In Secs. III and IV, the results for both the square lattice and
the checkerboard lattice are presented, respectively. Finally,
conclusions are drawn in Sec. V.

II. GENERAL THEORETICAL FRAMEWORK

We consider the Bose-Einstein condensate of bosons in
a 2D optical potential with periodicity characterized by two
lattice vectors to be defined below. To compare with realistic
three-dimensional experimental systems, our model applies to
the experiments where a strong trap is applied along the third
direction. We thus neglect the third dimension, which only
contributes to the effective interaction parameter. The 2D GP
equation is

ih̄∂tψ(r) =
[

− h̄2

2m
∇2 + V (r) + g|ψ |2

]
ψ(r), (1)

where V (r + a1) = V (r + a2) = V (r) with a1 and a2 the
lattice vectors; m is the atomic mass, and g is the interaction
parameter. ψ(r) is normalized as 1

�

∫
�

|ψ(r)|2dr = 1 where
the subscript � indicates an integral over the unit cell with an
area � = |a1||a2|.

We are interested in the lowest-energy state in the p-orbital
band. This type of state must be stationary and satisfy the
time-independent GP equation[

− h̄2

2m
∇2 + V (r) + g|ψ |2

]
ψ(r) = μψ(r), (2)

where μ is the chemical potential. The extended solution to
the above nonlinear periodic equation has the form ψ(r) =
eik·rf (r). For the usual Bloch states, f is a period function
with the same period as that of the optical lattice, f (r + a1) =
f (r) and f (r + a2) = f (r). Besides Bloch states, there are
other solutions such as the period-doubled solutions [25,30],

where f satisfies f (r + 2a1) = f (r) and f (r + 2a2) = f (r).
For the s band, the usual Bloch states always have lower energy
than that of period-doubled states. But for the p-orbital band,
previous studies [5,23] have shown that the period-doubled
solution has lower energy than the corresponding Bloch state
due to the extra π phase in p-orbital tunneling.

For the two types of lattices considered in this work, the
following two Bloch states are degenerate and have the lowest
energy among all the Bloch states,

Px =
∑

G

uGei(k1+G)·r, (3)

and

Py =
∑

G

vGei(k2+G)·r, (4)

where G = mb1 + nb2, b1, and b2 are reciprocal lattice
vectors, and k1 = b1/2 and k2 = b2/2. Substituting these two
equations into Eq. (2) leads to a series of nonlinear equations
of either u or v. We use the subroutine fsolve of MATLAB to
solve these equations.

There are other types of solutions, which can be symboli-
cally expressed as either

Px±y = 1√
2

(Px ± Py), (5)

or

Px±iy = 1√
2

(Px ± iPy). (6)

These solutions are period-doubled states and therefore non-
Bloch. Without interaction, these non-Bloch states would
have the same energy as the Bloch states Px and Py . With
interaction, these states may break the degeneracy, splitting
into either lower or higher energy. To find these non-Bloch
states, one can similarly substitute Eqs. (5) and (6) into Eq. (2)
and find the coefficients u and v numerically. The coefficients
u and v found here are in general different from the ones
found by substituting Eqs. (3) and (4) into Eq. (2). This is the
essential technical difference from the work in Ref. [23]. Due
to the time-reversal symmetry, it is sufficient to consider only
Px+y and Px+iy .

We are interested in the stability of these p-orbital states.
We know that the lowest-energy state in the s band is always
stable because it is the lowest-energy state of the system. It is
imperative to know whether the lowest-energy p-orbital state
is stable or not. In fact, this was already the concern at the
beginning of studying the p-orbital states in cold-atom systems
[5,6] as the decay to the s band seems almost inevitable.
However, it is possible that interaction may be able to stabilize
a certain p-orbital state and make it a metastable state. The
primary purpose of this work is to answer whether such a
possibility exists. As will be shown later, the state Px+iy always
has the lowest energy among all examined p-orbital states.
Consequently, we will focus on the stability of this state.

To examine the stabilities of a state, one can follow the well-
known procedure [24] and obtain the Bogoliubov equation in
momentum q space

εq

(
uq
vq

)
= σzM

(
uq
vq

)
, (7)

013635-2



STABILITY OF p-ORBITAL BOSE-EINSTEIN . . . PHYSICAL REVIEW A 87, 013635 (2013)

where σz is the Pauli matrix. For the state Px+iy , we have

M =
( L(q) gP 2

x+iy

gP ∗2
x+iy L(q)

)
, (8)

with

L(q) = − h̄2

2m
[(∂x + iqx)2 + (∂y + iqy)2]

+V (r) − μxy + 2g|Px+iy |2. (9)

Since Px+iy is period doubled, we have uq(r + 2a1) =
uq(r + 2a2) = uq(r) and vq(r + 2a1) = vq(r + 2a2) = vq(r).
To numerically diagonalize the matrix σzM , we expand u

and v in Fourier series as uq(r) = ∑
G uGeiG·r/2 and vq(r) =∑

G vGeiG·r/2. The diagonalization of σzM for the phonon
modes yields the Bogoliubov excitation of the state Px+iy .
This state has Landau instability if part of its Bogoliubov
excitations is negative; it has dynamical instability if part of
its Bogoliubov excitations is imaginary [25].

III. SQUARE LATTICE

The square lattice can be formed by simply overlapping
two counterpropagating laser beams. Mathematically, it is
described by V (x,y) = V0[cos(x) + cos(y)]. For this lattice,
it is convenient to use the following time-independent GP
equation[

− 1

2

(
∂2
x + ∂2

y

) + V (x,y) + c|ψ |2
]
ψ(x,y) = μψ(x,y).

(10)

The above equation has been made dimensionless by scaling
energy with 8Er and length with 1/2kL. In this section, x

and y are dimensionless. Er is the recoil energy and kL =
2π/λ is the wave vector of the laser beam. The interaction
constant is c = mng/h̄2 with m being the atom mass, n the
BEC density (the average particle number per site), and g =
2
√

2πh̄2as/(σm), where as is the s-wave scattering length and
σ is the characteristic length of the harmonic trap along the z

direction.
Following the procedure described in the above section, we

have numerically computed three states Px , Px+y , and Px+iy .
Fig. 1 illustrates how the energies and chemical potentials
change with the interaction constant c for these three states. It
is clear from the figure that state Px+iy always has the lowest
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FIG. 1. (Color online) (Square lattice) Chemical potential (left)
and energy per lattice site (right) for the Px state (blue solid line),
Px+iy state (red dashed one) and Px+y (green dashed dot line) in the
square lattice. V0 = 0.8Er .

FIG. 2. (Color online) (Square lattice) Phase and density profile
for state Px (a), (b), state Px+y (c), (d), and state Px+iy (e), (f),
respectively, for the square lattice. Arrows in (e) indicate the vortex
rotating directions. For phase in (a) and (c), the dark blue is 0, the
brown is π . x and y have units of 1/2kL. V0 = 0.8Er and c = 0.01.

energy and the energy gap to the other states increases with c.
This confirms the earlier results obtained with lattice model [5]
and variational method [23]. It is also shown in Fig. 1 that state
Px+y always has the highest energy among the three.

The phase and density profiles of these three states are
shown in Fig. 2. These three states not only differ in phase
but also in density. Since the wave functions for both states
Px and Px+y are real, their phase can only be either 0 or π .
Specifically, the state Px has a stripe phase structure while
the state Px+y has a square-shaped one. The wave function of
the state Px+iy is complex and breaks time-reversal symmetry.
Consequently, this state has much richer phase structure, which
is evidently shown by the staggered orbital currents in Fig. 2(e).
This feature of staggered orbital currents is the most prominent
predication in Ref. [5].

As the state Px+iy has the lowest energy among the p-orbital
states, we focus on the stability of this state. It is examined
through its Bogoliubov excitations by diagonalizing the matrix
σzM . Our computation finds that the Bogoliubov excitations
always have a negative part, indicating that the Px+iy has
Landau instability and is not a metastable state. The situation is
more delicate for dynamical stability. Figure 3 shows the phase
diagram of dynamical instability, where the stars mark out
the region of the (momentum) q space where the Bogoliubov
excitations are imaginary. It is clear from the figure that the
stable region of the q space increases as the interaction c

decreases. It is reasonable to expect that the whole region be
stable when c is small enough. However, within our numerical
capability, we are not able to identify the values of c and V0

for which the state Px+iy is free of dynamical instability. As
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FIG. 3. (Square lattice) Dynamical stability diagram of state
Px+iy for the square lattice at V0 = 0.8Er . The region of dynamical
instability is marked by stars. qx and qy are in unites of 2kL with a
step length 0.02. Since the diagram is symmetric with respect to qx

and qy , we only draw the upper triangle for (a) and (c) and the lower
one for (b) and (d). The upper limit for qx and qy is 0.25 is due to that
Px+iy is a period-doubled state.

shown in Figs. 3(a) and 3(b), even for very small c, there are
some regions where the excitations are imaginary. This means
that state Px+iy is dynamically stable only for extremely small
values of c. We have attempted to calculate the critical c for the
typical experimental V0 [2] and found that they are of the order
of 10−4. However, despite of intensive efforts, our numerical
method is in capable of pinning down the exact value of these
critical c as indicated by the irregular black line in the inset of
Fig. 7, where the parameter region of dynamical instability for
the square lattice is marked out. These results imply that it is
almost impossible to use the square lattice to study p-orbital
BEC states experimentally as dynamical instability can destroy
a BEC in tens of milliseconds [27].

IV. CHECKERBOARD POTENTIAL

The optical lattice used in the experiment [13] is a
checkerboard potential described by

V (x,y) = −V0

4
|η{[ez cos(α) + ey sin(α)]eikLx + εeze

−ikLx}
+ eiθ ez(e

ikLy + εe−ikLy)|2, (11)

where ey and ez are unit vectors in each direction. Here x and
y are the space coordinates, kL is the laser wave vector, α is
the polarization angle to the z direction, ε is the reflection
loss, η describes the small power difference between two
interferometers, θ is the phase difference between the beams
propagating in the x and y directions, and V0 is determined
by the laser power. The angle α can be used to adjust the
degree of anisotropy: when α = π/5, the energy minimum
points of the two p-orbital Bloch bands are degenerate. The
phase difference θ controls the relative depth of a double well.
In the experiment, bosonic atoms are loaded to the p-orbital
band by adjusting θ , η ≈ 0.95, ε ≈ 0.81, and V0 = 6.2Er with
the recoil energy Er = h̄2k2

L/2m.
To have a dimensionless time-independent GP equation as

in Eq. (10), we scale energy with 4Er and length with 1/
√

2kL.
In the dimensionless expression, the lattice vectors of the
potential are a1 = √

2π (ex + ey), a2 = √
2π (−ex + ey) and

reciprocal vectors are b1 = (ex + ey)/
√

2 and b2 = (−ex +
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FIG. 4. (Color online) (Checkerboard lattice) Chemical potential
(left) and energy per lattice well (right) for the Px state (blue solid
line), Px+iy state (red dashed one), and Px+y (green dashed dot one)
in the checkerboard potential. V0 = 6.2Er .

ey)/
√

2. The quasimomentum and coordinate vector are,
k = kxb1 + kyb2 and r = (xa1 + ya2)/2π , respectively.

We have done the same set of numerical computation for the
three states Px , Px+y , and Px+iy in the checkerboard lattice as in
the square lattice. Figure 4 shows their energies and chemical
potentials as a function of the interaction constant c. Similar
to the square lattice, the state Px+iy in the checkerboard lattice
is found to have the lowest energy too. There is however an
evident difference, i.e., for the checkerboard, the states Px+iy

and Px are very close in energy while state Px+y has much
higher energy. This feature suggests that the state observed in
the experiment [13] is probably not Px+y .

The phase and density profiles of these three states are
illustrated in Fig. 5. The phase profiles show a structure similar
to that for the square lattice, such that Px has the wavelike
stripe phase structure, Px+y has the square phase structure
and Px+iy has the staggered orbital currents structure [5]. This
result supports the conclusion that one may use the square
lattice as a simplified theoretical model to understand much
of the unconventional properties of the p-orbital condensates
as observed in the more complex, experimentally realized
checkerboard lattice. In terms of dynamical instability, the
two lattice configurations are however qualitatively different,
to be elaborated below. The density profiles do not show clear
difference between state Px and Px+iy and the reason is that
the probability density in the deeper well where the vortex
appears is very small.

For stability, we focus on that of state Px+iy just as in
the square lattice. We investigate it also through Bogoliubov
excitations by diagonalizing the matrix σzM . Similar to the
square lattice, our calculation shows that the Bogoliubov
excitations in the checkerboard always have negative part,
indicating that state Px+iy in the experiment also has Landau
instability. For dynamical stability, the unstable region in the
q space increases with c as shown in Fig. 6. However, there
is a crucial difference from the case of square lattice: there
exists a critical value of c, below which there is no dynamical
instability as indicated by the blank panel in Fig. 6(a). We
are able to mark out a region in the space spanned by the
system parameters c and V0/Er , where the Px+iy state is free
of dynamical instability (shown in the phase diagram Fig. 7).
Due to the uncertainty of the BEC density, we have marked
the experimental parameter range [13] with a solid line. This
shows that it is likely that the Px+iy for the experimental setup is
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FIG. 5. (Color online) (Checkerboard lattice) Phase and density
profile for state Px (a), (b), state Px+y (c), (d) and state Px+iy (e),
(f), respectively, in the checkerboard potential. Arrows in (e) indicate
vortex rotating directions. In (a) and (c), the dark blue is for phase
of 0 and the brown for phase of π . x, and y have units of 1/

√
2kL.

V0 = 6.2Er , c = 0.2.

dynamically stable. Since the time scale for Landau instability
is of the order of 500 ms [27], which is much longer than that
of the experiment [13], it is reasonable that Landau instability
does not have much effect.

In order to make sure that our calculation is correct, we sim-
ulate the real system of Eq. (1) with the split-operator method.

FIG. 6. (Checkerboard lattice) Dynamical stability diagram of the
state Px+iy of the checkerboard potential. The region of dynamical
instability is marked by stars. The blank panel in (a) indicates that the
system is free of dynamical instability for c = 0.1, to be contracted
with that for the square lattice in Fig. 3. qx and qy are in units of√

2kL with a step length 0.02. V0 = 6.2Er . Since the diagram is
symmetric with respect to qx and qy , we only draw the upper triangle
for (a) and (c) and the lower one for (b) and (d). The upper limit for
qx and qy is 0.25 is due to that Px+iy is a period-doubled state.

FIG. 7. (Color online) (Checkerboard lattice) Stable and unstable
region in the system parameter space for state Px+iy in the checker-
board potential. The black line indicates the parameter range used in
the experiment [13] where V0 = 6.2Er . The inset shows the stability
regions for the square lattice. The irregularity of the solid line in the
inset is caused by the inability of our numerical method to compute
precisely the critical value of c below which the system is dynamically
stable.

We evolve numerically a BEC in the Px+iy state with a small
perturbation δψ (10%). When c = 0.2, the simulation shows
that the state is stable. When c = 3.0 and c = 7.9, the simu-
lation shows that the state is destroyed after t = 17.5 ms and
t = 2.5 ms, respectively. All results in the three simulations
are consistent with our Bogoliubov excitation calculation.

To map out the phase diagram of dynamical instability
in Fig. 7 experimentally, one may need to use the Feshbach
resonance to tune the interaction strength. When the Feshbach
resonance is not available, one can still observe the effect of
dynamical instability by turning up the laser power to drive
the system into dynamically unstable regime. The effects of
dynamical instability should be similar to what was observed
in Ref. [27].

V. CONCLUSION

In conclusion, we have examined a cold gas of interacting
bosonic atoms loaded in two optical lattice geometries, namely,
the square and the checkerboard lattices, for which unconven-
tional p-orbital Bose-Einstein condensates have been under
active investigation in recent years, both theoretically and
experimentally. The usual theoretical approach used in the
past is to assume the standard tight-binding approximation and
conveniently reduce the system to a Hubbard-like lattice model
of one single orbital band of interest, i.e., the p band. The
present approach is however different. Here, the model system
is solved numerically with the GP equation of microscopic
two-body interaction by treating the optical lattice exactly as a
continuous, periodic potential, in which both the ground-state
s band and all the higher orbital bands are included. The
approach thus is capable of providing a complete analysis
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for the Landau and dynamical instabilities of a p-orbital BEC.
Such a complete analysis for instability was not considered
before, to the best of our knowledge. We find that the staggered
state Px+iy indeed has the lowest energy in the p band. By
computing the Bogoliubov excitation, we further find that for
both lattices Landau instability is present, which shows that the
staggered state is not really a state at local energy minimum.
For dynamical stability, we find that there exists a parameter
region where the staggered state is free of dynamical instability
for the checkerboard lattice whereas no such a parameter
region is found for the square lattice. This suggests that the
staggered state be of long life time in the former, but not the
latter.
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