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Observation of quantum dynamical oscillations of ultracold atoms in the F and D bands
of an optical lattice
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We report the observation of quantum dynamical oscillations of ultracold atomic gases in the F and D bands
of an ordinary optical lattice. We are able to control the Bragg reflections at the Brillouin-zone edge up to the
third order. As a result, we can switch the quantum dynamics from oscillations across both the F and D bands
to oscillations only within the F band. Our capability to observe these oscillations comes from a nonadiabatic
technique which allows us to load ultracold atoms efficiently to the G band of an optical lattice.
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I. INTRODUCTION

There has been a lot of effort both experimentally and
theoretically to study the quantum dynamics of ultracold
atoms in an optical lattice (OL), such as the celebrated
Bloch oscillations (BOs) [1–6] and the Landau-Zener (LZ)
tunneling [3,7–10]. These studies have focused on the lowest
band as it is hard to load atoms to high bands and then control
their quantum dynamics experimentally. Recently, people have
been pushing the boundary and studying quantum dynamics
involving more than one band. The effort has resulted in
the observation of Bloch-Zener oscillations (BZOs) [11–17],
where the quantum oscillations are between two Bloch bands
and the crossing between these two bands is facilitated by the
LZ tunneling.

However, this kind of oscillation within two Bloch bands is
very difficult to observe in a simple ordinary OL. In this kind
of simple lattice, the band gaps are always smaller for higher
bands. If atoms can tunnel from the S band to the P band, they
should also be able to tunnel from the P band to the D band. As
a result, the oscillations would involve uncontrollably many
bands [18]. To control oscillations within two bands, one has
to design lattices with more complex constructions, which in-
clude a binary lattice in waveguide arrays [14], the honeycomb
lattice [15], and the miniband structure [16,17]. In this work
we demonstrate experimentally that we can initiate and control
quantum oscillations with two high excited bands in a simple
ordinary OL, where the variable external force from the har-
monic trap instead of the usual linear external potential is used.

In this work the Bose-Einstein condensate (BEC) is initially
loaded nonadiabatically into the G band of a one-dimensional
ordinary OL. It subsequently tunnels to the F band and begins
oscillations within the F and D bands, which are clearly
observed in the momentum space. We can control the Bragg
reflection between momenta 3�kL and −3�kL, which is at
the first Brillouin zone (FBZ) edge between the F and D

bands, by tuning the OL strength. kL is the wave vector of
the laser forming the lattice. When the Bragg reflection is
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weak, quantum oscillations crossing the F and D bands are
observed. When the reflection is strong, quantum oscillations
are observed in only the F band. When the Bragg reflection
is at intermediate strength, we observe the superposition of
these two types of quantum oscillations. In our results, the
oscillations crossing the two excited bands can last up to 58 ms,
which is much longer than the BZOs observed in Ref. [17]. The
long oscillation time is due to the small influence of interatomic
two-body interaction in the higher-energy bands, which is
smaller than the interaction in lower-energy bands. Therefore,
the coherence can be kept for a long time, which is helpful to
the interference experiment in precision measurement. During
the oscillations, the BEC can be displaced up to ±100 μm
(470 lattice sites) in space, which is bigger than the spatial
displacement observed in super-Bloch oscillations [6].

II. EXPERIMENTAL METHOD TO PREPARE THE ATOMS
IN THE HIGH BANDS

In our experiment, a pure BEC of about 1.5 × 105 87Rb
atoms is prepared in a hybrid trap which is formed by
overlapping a single-beam optical dipole trap with a wave-
length of 1064 nm and a quadrupole magnetic trap. The
resulting harmonic trapping frequencies are (ωx,ωy,ωz) =
2π × (28,55,65)Hz. After preparing a BEC in the harmonic
trap, by using a series of standing-wave OL pulses within
tens of microseconds [19,20], we load the BEC into the
G band of a one-dimensional OL (along the x direction)
at the quasimomentum �q = 0. The OL is created by two
counterpropagating laser beams with the lattice constant a =
426 nm. The spatial potential is given by V0 cos2 (kLx), with
V0 being the lattice depth shown in Fig. 1(a).

This nonadiabatic shortcut method [19,20] consists of a
series of standing-wave pulses, as shown in Fig. 1(a), where the
pulse duration ti and the interval tf i (i = 1,2,3, . . . ) between
pulses are drawn schematically and are not in proportion to
the real time durations. The time t is the holding time of
the BEC in the OL. It allows us to nonadiabatically load a
BEC from the ground state of the harmonic trap |ψ0〉 directly
into a target state |ψa〉 = |n,q〉. Here |n,q〉 is a Bloch state,
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FIG. 1. (a) The time sequence for loading atoms into a target
Bloch state |n,q〉 and the holding time t in the OL. (b) TOF pictures
taken after loading atoms into the S and G bands. (c) A time sequence
consists of two sets of pulses for loading atoms into the Bloch state
in the F band with q = 0. Here eight pulses are shown, and in real
experiments the number of pulses can vary for different purposes.

where n = 1,2,3, . . . is the band index corresponding to the S

band, P band, D band, etc. The durations ti and intervals
tf i of the standing wave series depend on the target state
|n,q〉 and OL depth. The pulse sequence can be optimized
so that the final state is nearly a Bloch state (the fidelity can be
over 98%). For instance, for an OL depth of 7.5Er , by using
the time sequence (t1,tf 1,t2,tf 2,t3,tf 3,t4,tf 4,t5,tf 5,t6,tf 6) =
(20,40,42,14,14,12,14,12,20,4,22,34) μs, we obtain the
Bloch state in the G band with q = 0. For the Bloch state in
the G band with q = 0, ±4�kL momentum components have
dominant populations, while 0�kL dominates for the Bloch
state in the S band with q = 0, as shown by the experimental
results in Fig. 1(b) for V0 = 5Er . To get the Bloch state in the
F band with q = 0, because of the odd parity, we need two sets
of standing-wave pulses [21], as shown in Fig. 1(c). Starting
from the plane wave with zero momentum, in the first set
of pulses, the atoms experience spatial potential V0cos2(kLx),
during which atoms distribute in the even-parity bands, such
as the S and D bands. For the second set of pulses, the
atoms experience spatial potential V0cos2(kLx+3π/4), during
which atoms distribute in the odd-parity bands, such as the
P and F bands. For convenience, we load atoms into the G

band, with pulses only including potential V0 cos2 (kLx) in the
experiment.

III. EXPERIMENTAL OBSERVATION

After the BEC in the G band is prepared, we hold the
lattice and harmonic trap for a period of time t and then

switch off all potentials to take pictures after a 28-ms time of
flight (TOF). Three series of experimental absorption images
for the OL depths V0 = 5Er , 7.5Er , and 15Er are shown,
respectively, in Figs. 2(a)–2(c). Er = �

2k2
L/2m is the recoil

energy, with m being the atomic mass. The time separation
between neighboring images in the 5Er series is 1 and 0.5 ms
in the other two series. These series of images demonstrate
clearly three different quantum oscillations; we will explain
and analyze them later. For convenience, an extended band
structure is drawn in Fig. 2(d), where the energy gaps between
different bands are marked with As (s = 1,2,3,4,5,6).

The BEC is initially loaded in the G band, where the atoms
mostly populate equally around two momenta ±4�kL. As
atoms with these two momenta are at the center of the trapping
potential at the beginning, the only possible motion for them
is to move either to the left or the right. Consequently, they
lose their momenta while gaining harmonic potential energy.
This corresponds to the BEC quantum tunneling from the G

band to the F band over the tiny band gap at A1 and A6 in
Fig. 2(d). It is impossible for the BEC to move up along the
G band due to the conservation of energy. When the lattice
depth is very high and, as a result, the energy gap at A1 and
A6 is large, it is possible for the BEC to stay in the G band
for a long time. We have observed atoms remaining in the
G band for 5 ms when V0 = 20Er . For the lattice strength
of interest in our experiment, the BEC always tunnels from
the G band to the F band as soon as the initial loading
ends.

Once the BEC is in the F band, it continues to lose
momentum while gaining harmonic potential energy. This
corresponds to the BEC traversing dynamically along the F

band from A1 and A6 to A2 and A5 in Fig. 2(d). Once arriving
at A2 and A5, the atoms face different ensuing dynamics
depending on the lattice strength. If the lattice strength is small
and the Bragg reflection at A2 and A5 is weak, the BEC will
continue its dynamics into the D band by crossing the band
gap. After evolving dynamically along the entire D band, the
BEC comes to the band gap between the D and P bands at A3

and A4. This band gap is always large for the lattice strength
in our experiments. As a result, the atoms at A3 (−2�kL) will
be Bragg reflected completely to A4 (2�kL), while the atoms
at A4 will be Bragg reflected completely to A3. No tunneling
to the P band occurs. Afterwards, the BEC will reverse its
dynamics by moving up in momentum from A4 and A3 to A5

and A2. It eventually arrives at A6 and A1, finishing half of
an oscillating cycle. These oscillations crossing the two Bloch
bands (F and D bands) are driven under a variable force from
the harmonic trap. They are illustrated in Fig. 2(a) for lattice
depth V0 = 5Er , and their period is 24 ms.

Note that the BEC moving up along the bands around A4

and A3 in Fig. 2(d) by gaining momenta is due to the fact that
most of the atoms are away from the center of the trapping
potential and feel an accelerating force. This is different from
the initial stage when the BEC is loaded into the G band, where
most of the atoms are at the center of the trap and feel a very
small force for the finite size of the BEC.

When the OL is strong and the gap at A2 and A5 is large,
the Bragg reflection can dominate the dynamics, forbidding
the atoms from tunneling from the F band to the D band.
Instead, the atoms at A2 (−3�kL) will transfer completely to
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FIG. 2. Quantum oscillations of the BEC in higher bands of the OL. Experimental results in momentum space with (a) lattice depth
V0 = 5Er , (b) V0 = 7.5Er , and (c) V0 = 15Er . The oscillations in (a) are across both the F and D bands, and oscillations in (c) are only within
the F band; the dynamics in (b) are a superposition of the oscillations in (a) and (c). (d) Schematic of extended Bloch bands (P , D, F , and G)
of a one-dimensional OL. The green areas (I and III) are for the F band, and the yellow areas (II) are for the D band.

A5 (3�kL) via Bragg reflection, while the atoms at A5 will also
transfer completely to A2. In this way, the quantum dynamics
is confined within the F band. These oscillations only within
the F band are observed in our experiment for V0 = 15Er and
are shown Fig. 2(c) with a period of 17 ms.

When the lattice strength is intermediate, the Bragg reflec-
tion at A2 and A5 will be partial: one part of the atoms will
be reflected and undergo oscillations within the F band; the
other part of the atoms will tunnel to the D band and oscillate
across both the F and D bands. As a result, we should be able to
observe a superposition of the two kinds of oscillations: across
both the F and D bands and only within the F band, when the
lattice is at an intermediate strength. This is indeed what we
observed in experiment, as shown in Fig. 2(b), and simulated
in theory, as shown in Figs. 3(c) and 3(d) for V0 = 7.5Er ,
where the two kinds of oscillations are clearly seen and the
ratios of atoms undergoing the two different oscillations can
be tuned by the lattice strength.

IV. THE THEORETICAL EXPLANATION
AND SIMULATION

We have simulated the experiment with the one-
dimensional time-dependent Gross-Pitaevskii equation (GPE)
with interatomic interaction. In the simulation, the initial state
is ψ(x,t = 0) = ψg(x)φq=0(x), where ψg(x) is the ground
state of the BEC in a harmonic trap and φq=0(x) is the Bloch

wave function in the G band at q = 0. We have plotted
our numerical results in both real space and momentum
space in Fig. 3 for V0 = 5Er and V0 = 7.5Er . The results
in momentum space agree well with the experimental results
in Fig. 2. We can infer from Fig. 3(b) that the BEC can
move away from the center of the trap by up to ±100 μm
for the oscillations in both the F and D bands. For oscillations
in the F band, our numerical results indicate that this
displacement can be up to ±75 μm, which is much larger than
what was observed in super-Bloch oscillations in Ref. [6].
There is a small discrepancy between the theoretical results
and the experimental results. For example, there is a slight
offset in the experimental oscillations around 6–7 ms for
V0 = 5Er ; this slight offset is not seen in the corresponding
theoretical results. The explanation for this small discrepancy
becomes clear when we discuss Bragg reflection in the next
section.

It is difficult to observe oscillations in real space in
experiment. To do that, we need to keep the TOF very short.
Within such a short TOF, the atomic cloud is still very dense,
and the TOF image is not proportional to the cloud density.
At the same time, because of the short TOF, a large cloud of
thermal atoms that have no time to disperse concentrates in the
middle and obscures the TOF images.

As the BEC density profile varies smoothly over hundreds
of lattice sites, its dynamics can be well described by
the semiclassical dynamics of Bloch particles [22], where
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FIG. 3. The numerical simulations of quantum dynamical oscil-
lations for the BEC in higher bands in both real space and momentum
space. (a) and (b) Results for V0 = 5Er and (c) and (d) results for
V0 = 7.5Er . All theoretical results except for the white circles in (a)
are from the GPE with interaction, while the white circles in (a) are
from the semiclassical model without interaction.

interaction is ignored,

�
d r
dt

= ∇qEn(q), (1)

�
dq
dt

= f (r), (2)

where En(q) is the nth energy band and f (r) is the force
acting on the Bloch particle. For Bloch electrons in traditional
condensed-matter physics, we usually have f (r) = −eE −
e d r

dt
× B. In our case, f (r) = −mω2

xxêx , with the harmonic
trap frequency ωx .

For simplicity, we describe the energy bands with a cosine
function as En(q) = An + Bn

2 cos (qπ/kL), with n = F,D

representing the F and D bands, respectively, and |Bn| being
the width of the energy bands. For this simplified case, we can
solve Eqs. (1) and (2) analytically and find that the oscillation
periods are

TF = 4�kL√
mωxπ

C1√
BF

(3)

and

TFD = 4�kL√
mωxπ

(
C1√
BF

+ C2√−BD

)
, (4)

where C1 = ∫ kL

q+
d(qa)√

cos (q+a)−cos (qa)
and C2 = uK(u). q+ is

the initial quasimomentum considering the finite size of

F

F

FD

F
D

FIG. 4. The periods of the two kinds of oscillations for (a) TF for
V0 = 15Er and (b) TFD for 5Er . The red lines are fitting functions:
(a) TF = 3.01/ωx and (b) TFD = 1.38/ωx .

the BEC, u = ( BF

−BD
cos2 q+a

2 + 1)
−1/2

, and K(u) is the
complete elliptic integral of the first kind as K(u) =
π
2 {1 + ∑+∞

n=1 [ (2n−1)!!
2nn! ]

2
u2n}. It is obvious that the periods for

the two kinds of oscillations are inversely proportional to ωx .
This inverse relation does not change even when we use the

realistic Bloch bands instead of the idealized cosine form. This
is confirmed by our numerical results with the semiclassical
equations (1) and (2), as shown in Fig. 4. Since ωx = 2π ×
28 Hz in our experiment, we have TF = 17.1 ms for V0 = 15Er

and TFD = 23.9 ms for V0 = 5Er , which agree very well with
the experimental results in Fig. 2. In Fig. 3(a), the semiclassical
oscillations are plotted as white circles, matching both the
experimental result and the numerical GPE result.

V. HIGH-ORDER BRAGG REFLECTION

Bragg reflection (or scattering) at the Bloch band edge or
center is a fundamental quantum process in periodic systems.
As we have already seen, it plays a crucial role in the
oscillations observed in our experiments. We now take a closer
look at it by recording the absorption images every 0.1 ms. Two
series of images are shown in Fig. 5, where we see clearly the
reflection process between ±3�kL in Fig. 5(a) under 15Er and
between ±2�kL in Fig. 5(b) under 5Er . Bragg reflections have
been demonstrated in lower bands with ultracold [1,23,24]
atomic gases and in higher bands with ultracold atoms by using
a time-dependent OL in Ref. [25], where only reflection results
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FIG. 5. High-order Bragg reflections process observed (a) at the
edge of the F band for V0 = 15Er and (b) at the center of the D band
for V0 = 5Er in the FBZ. (c) The simulation result from the GPE for
V0 = 5Er . The vertical axis is the holding time t .

were given but the reflection processes were not shown. In our
experiment, the processes of high-order Bragg reflections are
obviously observed.

We use Fig. 5(b) to show in detail what is observed in
our experiment. The Bragg reflection occurs roughly between
5.8 and 6.1 ms. During this period, atoms around 2�kL get
scattered to −2�kL, while atoms around −2�kL get scattered
to 2�kL. As a result, there are two fractions of atoms at 2�kL:
one fraction waits to be reflected to −2�kL, and the other
consists of atoms just scattered from −2�kL. As atoms at
±2�kL are located in different places, these two fractions at
2�kL are separated in coordinate space. With a 28-ms TOF,
these two fractions appear as two different peaks. There are
also two fractions for −2�kL. That is why atoms with the same
momentum have different positions. The same is true for the
reflection between ±3�kL in Fig. 5(a). The experiment for
V0 = 5Er is simulated with the GPE. The computed density
distributions in real space after a period of OL holding time t

and a 28-ms TOF are shown in Fig. 5(c), which is consistent
with our experimental result in Fig. 5(b).

When the atoms are not Bragg reflected, they tunnel from
one band to a neighboring band. This is the well-known LZ
tunneling. In other words, the Bragg reflection can be described
as a process complementary to the LZ tunneling. Between

Er

FIG. 6. The calculated transition probability from the F band to
D band versus V0 is shown as the blue solid line. The black circles
are the experimental results. The band gaps between the F and D

bands at the FBZ edge versus the lattice depth are also shown by the
red solid line.

the F and D bands, the tunneling is determined by PFD =
e−2πγFD [26], with

γFD = �2
FD

4�

∣∣∣∣6�kLf (x)

m

∣∣∣∣
−1

. (5)

The calculated probability PFD versus V0 is shown in Fig. 6 by
the blue solid line. It is clear that the tunneling probability de-
creases with the increasing lattice depth. It is close to 1 at V0 =
5Er but close to zero at 15Er . Black circles are experimental
results for the ratio of atoms that tunneled to the D band. There
is very good agreement between the experiment and the theory.
The band gaps �FD between the F and D bands at quasimo-
menta ±�kL versus V0 are shown by the red solid line in Fig. 6
to assist with the understanding of this quantum transition.

VI. CONCLUSION

In summary, we have loaded a BEC in a one-dimensional
OL nonadiabatically into the G band. The BEC is then
observed to tunnel to the F band and undergoes quantum os-
cillations within the F and D bands. The variable force exerted
on atoms enables direct visualization of oscillations in higher
bands in the momentum space. By controlling the Bragg re-
flection at the edges of the F and D bands with the OL, we have
observed three different types of quantum oscillations. At weak
lattice strength, oscillations between both the F and D bands
are observed; at strong lattice strength, oscillations only within
the F band are observed. At intermediate strength, a superpo-
sition of the above two dynamical oscillations is observed.
Furthermore, we have directly demonstrated the high-order
Bragg reflections process in high excited bands of the OL.
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