Manipulating Molecular Spins at the Nanometer Scale

薛其坤

清华大学物理系

Members: 陈曦 马旭村 贾金锋 季帅华 付英双 张 童 吴 蕊

Acknowledgements

- 段文晖 (Tsinghua University, Beijing)
- 裘晓辉 (National Center for Nanoscience & Technology, Beijing)
- 张 平 (Institute of Appl. Phys. & Computa. Math. Beijing)

Molecule Based Spintronics

- 1. Molecule-electrode (metal) interaction
- 2. Molecule-molecule interaction
- 3. Spin-polarized electrons

(injection, transport, manipulation, detection...)

(under external fields)

Essential but Challenging!

Content

- I. Introduction
- **I.** Experiment
- II. Kondo Effect (MnPc)
- IV. Zeeman Effect (CoPc)
- V. Gap States (Mn & Cr)
- VI. Summary

localized spin + surface

Anderson Model

$H = H_{c} + H_{mix} + H_{d} + H_{U}$ $H_{c} = \sum_{k\sigma} \epsilon_{k} c_{k\sigma}^{\dagger} c_{k\sigma}$ $H_{mix} = \sum_{\sigma} V_{k} c_{k\sigma}^{\dagger} d_{\sigma} + h.c.$ $H_{d} = E_{d} \sum_{\sigma} n_{\sigma}$ $H_{U} = U n_{d\uparrow} n_{d\downarrow}$

Three parameters:

E_d: energy of molecular level *U*: Coulomb energy $\triangle \sim |V|^2 N$: peak width

Anderson Model

Parameters: E_d , U, \triangle

Kondo Effect

Discovered in the 1930s Explained in the 1960s

Interaction between spin and environment

Kondo

$$T_{K} = \sqrt{\frac{\Delta U}{2}} \exp\left(\frac{\pi}{2\Delta U}E_{d}(E_{d}+U)\right)$$

Anderson Model

localized spin + surface

Platform

Quantum Size Effect Zeeman Kondo Magnetism Superconductivity

.

Our Molecules

II. Experiment

Our Surface

Pb (111) thin films on Si

Pb thin films on Si

Material Properties Modulated by QSE

Superconductivity (Tc): Growth kinetics: Electron-phonon coupling : Upper critical field : Surface diffusion: Kondo resonance: Surface chemical reactivity:

.

SCIENCE 306, 1915 (2004)

PRL 92, 106104 (2004)

PRL 95, 096802 (2005)

PRL 95, 247005 (2005)

PRL 95, 266102 (2006)

PRL 99, 156601 (2007)

PNAS 104, 9204 (2007)

Superconductivity (Tc) oscillation

Guo, Zhang et al., **SCIENCE 306**, 1915 (2004) Zhang et al., **PRL 96**, 096802 (2005)

perconducting energy gap parameters C_n , vs thickness of film. At each resonance, a new value of ntribute. All values of C_n are shown for small thicknesses; thereafter, only the largest and smallest, to avoid confusion. The peak heights lie well above the bulk value, C_{∞} , which is also shown on the troughs are only slightly below C_{∞} . The width of the resonances is too small to show on the scale of The distance between resonances equals one half of the deBroglie wavelength of an electron at the e. The parameters used for this figure were $N/V = 2 \times 10^{22}$ electrons/cm³, $\rho = 0.3$, and $\hbar \omega_c = 100^{\circ}$ K.

J. M. Blatt and C. J. Thompson *PRL 10*, 332 (1963)

II. Experiment

Our tool: STM

II. Experiment

Our Instrument

Unisoku UHV ultra-LT (400mK) high magnetic field (11T) STM

Ji et al., PRL (in press)

III. Kondo Effect

Kondo Effect

$$T_{K} = D \sqrt{\frac{2\Delta}{\pi D}} e^{-\frac{1}{2J\rho_{0}}}$$

J: coupling of spins and conduction electrons

 ρ_0 : density of states of host

$$J = \frac{\Delta}{\pi \rho_0} \left(\frac{1}{|\overline{\varepsilon}_d|} + \frac{1}{|\overline{\varepsilon}_d + U|} \right)$$
$$\Delta = \pi \left| V \right|^2 \rho_0$$

$$T_{K} = \sqrt{2D|V|^{2} \rho_{0}} e^{-\frac{1}{2|V|^{2}(\frac{1}{|\overline{z}_{d}|} + \frac{1}{|\overline{z}_{d} + U|})\rho_{0}}}$$

Energy spectra for an Anderson impurity system

Without hybridization

With hybridization In the Kondo regime below T_{κ} .

Direct observation at single atoms/molecule level by STM

Ce/Ag(111)

PRL80, 2893 (1998) Wolf-Dieter Schneider Co/Au(111)

M. Crommie

Nature 403, 512(2000) D. M. Eigler

3d transition metal on Au (111): Ti, V, Cr, Mn, Fe, **Co**, and **Ni**.

MnPc on Pb(111)

Modulation of Kondo Effect by QSE

STM Manipulation

III. Kondo Effect

Kondo Resonance

The same molecule

on the same surface under the same measurement conditions!

Fano Lineshape

In tunneling experiments:

$$\frac{dI}{dV}(V) \propto \frac{(\varepsilon'+q)^2}{1+\varepsilon'^2} \quad \varepsilon' = \frac{eV-E_0}{K_B T_K}$$

Resonance width: $2\Gamma = 2K_B T_K$

III. Kondo Effect

Kondo Temperature

Fu et al., PRL 99, 156601 (2007)

Oxide surface

Splitted Kondo

Kondo Mapping

IV. Zeeman

IETS via Single Spin Flipping

Spin-flip IETS

Mn Atom Chains

Hirjibehedin et al., Science 312, 1021(2006)

IV. Zeeman

Measurement of g-factor of single molecule

Model Calculations

Heisenberg model:

$$H_N = J \sum_{i=1}^{N-1} S_i \cdot S_{i+1}$$

Dimer: (3rd layer CoPc)

$$H = \frac{J}{2} [(S_1 + S_2)^2 - S_1^2 - S_2^2]$$

$$\Delta E_1 = J$$

Trimer: (4th layer)

$$H = \frac{J}{2} [(S_1 + S_2 + S_3)^2 - (S_1 + S_3)^2 - S_2^2]$$

Tetramer: (5th layer)

$$H = \frac{J}{2} [(S_1 + S_2 + S_3)^2 - (S_1 + S_3)^2 + (S_2 + S_3 + S_4)^2 - (S_2 + S_4)^2 - (S_2 + S_4)^2 - (S_2 + S_3)^2]$$

$$S_{A} > \frac{1}{2} \qquad \Delta E_{1} = JS_{A}$$
$$S_{A} = \frac{1}{2} \qquad \Delta E_{1} = J$$

only for
$$S_A = \frac{1}{2}$$
 $\Delta E_1 = J$ $\Delta E_2 = 1.5J$

Manipulation of single-molecule spin-states

Zeeman ↔ Kondo

Ji et al., PRL (in press)

Three Functions & Three Milestones

Imaging

Manipulation

Spectroscopy

Invested by Gerd Similgrand Heimich Science, (Sb) Research Elvision Alamic resolution megins of sorfsters 1988 Noted Price in players

Quantum Corral (1990)

IETS (1997)

Invention of STM (1981)

VI. Summary

Topic tates of ads

Spin states of adsorbates Toolbox

Low temperature (B) STM Single molecule manipulation Scanning tunneling spectroscopy Inelastic tunneling spectroscopy (IETS) via single spin flip Gap states in superconductor

Progress

Kondo effect modulation via QSE Magnetic coupling between molecules Manipulating spin states at single molecular level

Perspective

Organic magnetism Molecular spintronics Molecular recognition Single atom reaction detection.....

Thank you very much!!!

localized spin + surface

magnetic atom/molecule

Superconductive film

Platform

Quantum Size Effect Zeeman Kondo Magnetism Superconductivity

Atomically flat Pb films on Si(111)

Thickness: 7nm (24ML) Uniformity: ~centimeter

Pb(bulk): coherent length 87nm

2D electronic system 1D Square Potential Well-tunable L

Pb

Si(111) 0.1°

QSE对电子结构和超导的影响

Superconductivity (Tc) oscillation

Guo, Zhang et al., **SCIENCE 306**, 1915 (2004) Zhang et al., **PRL 96**, 096802 (2005)

perconducting energy gap parameters C_n , vs thickness of film. At each resonance, a new value of ntribute. All values of C_n are shown for small thicknesses; thereafter, only the largest and smallest, to avoid confusion. The peak heights lie well above the bulk value, C_{∞} , which is also shown on the troughs are only slightly below C_{∞} . The width of the resonances is too small to show on the scale of The distance between resonances equals one half of the deBroglie wavelength of an electron at the e. The parameters used for this figure were $N/V = 2 \times 10^{22}$ electrons/cm³, $\rho = 0.3$, and $\hbar \omega_c = 100^{\circ}$ K.

J. M. Blatt and C. J. Thompson *PRL 10*, 332 (1963)

Oxygen adsorption on Pb

O₂ (~120L @LN₂)

10ML, 12ML:more sites11ML:less sites

10ML: θ=0.2453

11ML: θ=0.0831

3 times!

500nm x500nm

Oscillating oxidation on Pb(111) surface

QSE on Surface Oxidation of Pb(111)

Xucun Ma et al., PNAS 104, 9204 (2007)

In the same metal Pb island,

the behaviors of electrons are different

Surface Reactivity & LDOS at E_F (O_2/Pb)

Xucun Ma et al., PNAS 104, 9202 (2007)

Kondo Effect

