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Bloch waves and bloch bands of Bose-Einstein condensates in optical lattices
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Bloch waves and Bloch bands of Bose-Einstein condensates in optical lattices are studied. We provide
further evidence for the loop structure in the Bloch band, and compute the critical values of the mean-field
interaction strength for the Landau instability and the dynamical instability.
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. INTRODUCTION P(x,1)=e ¢ (%), (1.2)

Bose-Einstein condensat@ECs in optical lattices have where ¢, (x) is a periodic function of period 2 andk is the
been attracting increasing attention from both theofsts’]  Bloch wave number. Each Bloch wave stdfe?) satisfies

and experimentalists8,9]. People are interested in how the the time-independent Gross-Pitaevskii equation
interaction and coherence of this system affect the interesting

phenomena observed with dilute cold atoms in optical lat-
tices[10], such as Landau-Zener tunneling and Bloch oscil- 5
lations. Recent studies have shown that these phenomena are
indeed strongly influenced by the interaction between atoms.
A series of effects have been discovered, including nonlinear
Landau-Zener tunnelinfl], the breakdown of Bloch oscil-
lations[2,3], and dynamical instabilitj2,4]. There are simi-
lar nonlinear periodic systems in other fields, for example,
the system of nonlinear guided waves in a periodically lay- Il. BLOCH BANDS
ered mediunj11]. . .
In a one-dimensional optical lattice created by two coun- In Ref. [1], we studled_ t_he tunneling betv_veen th_e two
terpropagating off-resonance laser beams, a BEC is esse west bands to see how_|t 1S affe_cted by the m_teractlon. We
tially a one-dimensional system when the lateral motion ca ound that the tunneling is described by a revised Landau-

be either neglectef6] or confined[9]. Its grand canonical ener model, which we call the ”OF‘"”eaf Laqdau-Zener
Hamiltonian is model. This model predicts a dramatic change in the band

structure, a loop appearing at the Brillouin zone eéige
+1/2 forc/v>1 (see Fig. L A direct consequence of this

3 2
&Hk di+Cl il i+ v coX) = by,

1.3

s can be verified by variation of the Hamiltoniéh.1).
Bloch bands are given by the set of eigenenergi€s).

H= dxl v*| = = 2 4 p cosx | g+ —| wl4— 2t loop structure is the bre'akdown'of t_he Bloch oscillations due
Jfoc kd/ ( 2ax2 "7 v 2le ulyl ] to the nonzero adiabatic tunneling into the upper band.
(1.2 The loop structure is confirmed by an exact solution

found recently by Bronskeét al.[Eq. (10) of Ref.[4]], which

wherey is the macroscopic wave function of the BEC. In the @ssumes a much simpler form in terms of our notations:
above equation, all the variables are scaled to be dimension- , _
less using the system’s basic parameters: the atomic mass yp(x)=a,e™?+a_e ™2 (0
the wave numbek; of the two laser lights, and the average
densityn, of the BEC. The strength of the periodic potential |
v is in units of 42k?/m, the wave functiony in units of |
Jno, x in units of 1/%, , andt in units of m/4%k?. The i
coupling constant= wnoaslkf, whereag>0 is thes-wave !
scattering length. A two-dimensional version of this system u !
has also received some attent{dr?]. X !
In this Brief Report, we study the Bloch bands and Bloch !
waves of a BEC in an optical lattice, and present additional :
results that we were unable to obtain in our previous studies !
in Refs.[1,2]. These results are possible now due primarily !
to the development of an exact solution in Hdf. As Bloch -1 =12 0 1/2 1
bands and Bloch waves are the two most important concepts k
in understanding a linear periodic system, they will also play
crucial roles in the physics of the nonlinear periodic system FIG. 1. Schematic drawing of the first and second Bloch bands
(1.1. Bloch waves are the extremum states of the Hamilof a BEC in an optical lattice whem>v. wx is in units of
tonian(1.1) of the form 472k?/m; K in units of X, .
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0.2 - - T and a dynamical instability. Moreover, we found that these
instabilities can disappear from all these Bloch waves when
the atomic interaction is beyond certain critical values for a
fixed lattice strength. For easy reference, we call the critical
value for the Landau instabilitg, , and the critical value for
the dynamical instabilitg, . In that work, we were unable to
find these two critical values because our numerical method
was not good enough to find accurate Bloch waves at the
zone edge. Now the exact solutigg allows us to overcome
the difficulty and calculate these two critical valugs and
Cq- It is done by studying the stabilities of the Bloch wave
g . Since the Bloch wave at the zone edge is the last one to
become stable either in terms of the Landau instability or
dynamically, the critical values af for g to become stable
are justc, andcy.
The physical significance of the two critical valugsand
cq Of g lies in the way the Bloch stateslat 0 are achieved
experimentally: the Bloch state &t 0 is first prepared and
k (v=0.03) then driven to the desired Bloch statek&t0 by accelerat-
ing the optical latticd 10]. Therefore, as the only point con-
FIG. 2. The lowest Bloch bands of BECs in an optical lattice necting the loop to the rest of the Bloch band, a stajale
obtained by numerical calculation. Top curve is ©=0.05>v;  means that the Bloch states on the loop can be accessed and
middle curve forc=0.03=v; bottom curve forc=0.01<v. The  studied experimentally by accelerating the optical lattice.
in_set is an enlarged version of the tips. The units are the same as in \\je first study the Landau instability by analyzing how the
Fig. 1. energy of the system deviates under a small perturbation.
Since the system is periodic, we are allowed to write the
where a. = (Jc—v = \c+v/2\c. Substituting it into Eq. perturbation as
(1.3, we haveu=5+c. This solution exists only when _ . ,
=v, and is a Bloch wave at the edge of the Brillouin zone, =g+ e u(x,q) e +v* (x,q)e '], (3.0
k=1/2. This Bloch wave carries a nonzero velocity )
JcZ=v?/2¢, while its complex conjugate has an oppositeWh?req ranges betweer-1/2 an_d 1/2, Ia_bellng the pertur-
velocity. This is in sharp contrast with the behavior in aPation mode, and the perturbation functianandv have a
linear periodic system, in which Bloch waves at the zonePeriodicity of 2m in x. Then the energy deviation caused by
edge always have zero velocity. This difference confirms thdhis perturbation is
looped band structure. The solutigig and its complex con-
jugate are the two degenerate states at the crossing Yoint SE= fw dx(u* v*)l\/l(q)< u) 3.2
(Fig. 1). The nonzero velocity carried by this Bloch wave is % ' v)’
a manifestation of the superfluidity of the BEC. For free
particles, the flone™/? i

0.15

B o1

0.05

is stopped completely by Bragg scat- Where

tering from the periodic potential; for the BEC, the flow can )

no longer be stopped when the superfluidity is strong, that is, Mq) L£(1/2+q) Cog

c=v. . . cop®  L(-12+q)
This loop structure is further supported by our numerical

calculation of the lowest band(k), as shown in Fig. 2. Itis with

evident that the slopdu/dk at the zone edgk= *=1/2 be-

comes nonzero as the interaction strength increased over

the periodic potential strength, a clear indication of the

loop structure. However, due to the limitation of our numeri-

cal method[2], we are unable to produce the loop directly. and

An improved numerical method is being developed to calcu-

late the loop and the higher Bloch bands. 5 c’—v? v . v
Pg=c+ 2 c® X+c— 2c © .

lIl. STABILITY OF BLOCH WAVES (3.5

: (3.3

a+'k2 + ! 3.4
x i —v cogX) C_§ (3.4

1
Lk=-3

In our second papdi2], we studied the superfluidity and If M(q) is positive definite for all-1/2<q=<1/2, the Bloch
stability of the Bloch waves in the lowest bafexcluding  wave g is a local minimum and a superflow. Otherwisg,
the loop. We found that the Bloch waves in the middle of can be negative for somge the Bloch wave is a saddle point
the Brillouin zone represent superflows, and the other Blocland has a Landau instability. As already noticed in R2f.
waves toward the zone edge have both a Landau instabilitthe positive definiteness of the matride){q) for all g’s is

025601-2



BRIEF REPORTS PHYSICAL REVIEW A 65 025601

' ' The value ofcy at pointD is confirmed by analyzing the
limiting casev<c, where the matrixoM (1/2) can be ap-
proximated with a &4 matrix:

! 0 c -
Cc— § v
0 + 3 0 C
‘T8
oM (1/2)~ 3
-C 0 -——¢c O
0.1 . 8
1
0 , , (3.9
0 0.05 0.1

v

FIG. 3. The critical values ot. The dashed line i€, , the  The eigenvalues of this matrix can be found exactly; all of
critical value ofc for all the Bloch waves in the lowest band being them are real only wheo> 3/16. Note that the poird must
superflows; the solid line isy, above which all the Bloch waves in  phe ynderstood in the sense tlegt—3/16 asv— 0 since pre-
the lowest band are dynamically stabbe= mnoas/ ki, andvisin  cisely atu=0 the system has no dynamical instability. As
units of 442k¢/m. one may get an impression from Fig. 3 that the asymptotic

behavior of the two curves at largeis linear, we want to

stress that it is not. Our numerical results show that the
guaranteed by the positive definitenessMf0). Diagonal-  asymptotic behavior undergoes very small oscillations along
izing M (0) for different values ot with a fixedv, we obtain 3 straight line, of which we have no complete understanding
the critical valuec, , which is shown as a dashed line in Fig. at this moment.

3. For the intersection point at v=0, we havec =1/4 Finally, we make two remarks. First, the method of defin-

=(k=1/2)%. ing Bloch waves and Bloch bands for the nonlinear system
The dynamical stability of the Bloch wawgg is studied  (1.1) at the beginning is a natural generalization from the

by linearizing the Gross-Pitaevskii equation: linear periodic system. Nevertheless, there is an essential dif-

ference due to the nonlinearity. In the linear systersQ),
the Bloch waves are the only extremum states of the Hamil-

o 1 2y tonian or the only eigenfunctions of EL.3); for the non-
iE= > a?Jr clyl?y+v cogx) . (3.6 linear system(1.1), there are possible extremum states that

are not Bloch waves.

Second, it is interesting to put the dynamical instability
With a procedure similar to the above, we arrive at the lin-that is discussed in this report and in R€f,4,5 into per-
earized dynamical equation spective. Usually, quantum dynamics is a regular motion be-

cause it has discrete eigenvalues and thus an almost periodic
motion regardless of whether its corresponding classical dy-
glu u I 0 namics is chaotic or not. In this sense, quantum chaos has
|_( ) aM(q)( ) 0':( ) (3.7 been called “pseudochao$13]. In contrast, the dynamical
instability that we have discussed is “true” quantum dynami-
cal chaos that deserves more attention in the future. On the
other hand, with the Madelung transformatiop(x,t)
The dynamical stability is determined by the maiwiki(q). = p(x,t)e'>*", the nonlinear Sctidinger equatior3.6) can
If all oM (q) for —1/2<qg=<1/2 have no complex eigenval- be turned into a set of equations of fluid dynamics. In this
ues, theny is dynamically stable; otherwise, it is unstable. regard, the quantum dynamical instability should be related
However, as pointed out in Re&], the dynamical instability to the turbulence in fluid dynamics, and we may call it
always starts at the perturbation magte 1/2. Therefore, we ~“quantum turbulence.”
need to diagonalize onlyM(1/2) to find the critical value
Cq. The results are shown as the solid line in Fig. 3, where
the intersectiorD atv =0 is preciselycy=3/16. This lower
bound of the critical valueey simply means that whego
< 3/16 any periodic potential brings the dynamical instability ~ This work has been supported by the NSF, the Robert A.
into the system. Welch Foundation, and the NNSF of China.
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