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Bloch waves and bloch bands of Bose-Einstein condensates in optical lattices
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Bloch waves and Bloch bands of Bose-Einstein condensates in optical lattices are studied. We provide
further evidence for the loop structure in the Bloch band, and compute the critical values of the mean-field
interaction strength for the Landau instability and the dynamical instability.
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I. INTRODUCTION

Bose-Einstein condensates~BECs! in optical lattices have
been attracting increasing attention from both theorists@1–7#
and experimentalists@8,9#. People are interested in how th
interaction and coherence of this system affect the interes
phenomena observed with dilute cold atoms in optical
tices @10#, such as Landau-Zener tunneling and Bloch os
lations. Recent studies have shown that these phenomen
indeed strongly influenced by the interaction between ato
A series of effects have been discovered, including nonlin
Landau-Zener tunneling@1#, the breakdown of Bloch oscil
lations@2,3#, and dynamical instability@2,4#. There are simi-
lar nonlinear periodic systems in other fields, for examp
the system of nonlinear guided waves in a periodically l
ered medium@11#.

In a one-dimensional optical lattice created by two cou
terpropagating off-resonance laser beams, a BEC is es
tially a one-dimensional system when the lateral motion
be either neglected@6# or confined@9#. Its grand canonica
Hamiltonian is

H5E
2`

`

dxH c* S 2
1

2

]2

]x2 1v cosxDc1
c

2
ucu42mucu2J ,

~1.1!

wherec is the macroscopic wave function of the BEC. In t
above equation, all the variables are scaled to be dimens
less using the system’s basic parameters: the atomic mam,
the wave numberkL of the two laser lights, and the averag
densityn0 of the BEC. The strength of the periodic potent
v is in units of 4\2kL

2/m, the wave functionc in units of
An0, x in units of 1/2kL , and t in units of m/4\kL

2 . The
coupling constantc5pn0as /kL

2 , whereas.0 is thes-wave
scattering length. A two-dimensional version of this syst
has also received some attention@12#.

In this Brief Report, we study the Bloch bands and Blo
waves of a BEC in an optical lattice, and present additio
results that we were unable to obtain in our previous stud
in Refs. @1,2#. These results are possible now due primar
to the development of an exact solution in Ref.@4#. As Bloch
bands and Bloch waves are the two most important conc
in understanding a linear periodic system, they will also p
crucial roles in the physics of the nonlinear periodic syst
~1.1!. Bloch waves are the extremum states of the Ham
tonian ~1.1! of the form
1050-2947/2002/65~2!/025601~4!/$20.00 65 0256
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c~x,t !5eikxfk~x!, ~1.2!

wherefk(x) is a periodic function of period 2p andk is the
Bloch wave number. Each Bloch wave state~1.2! satisfies
the time-independent Gross-Pitaevskii equation

2
1

2 S ]

]x
1 ik D 2

fk1cufku2fk1v cos~x!fk5mfk ,

~1.3!

as can be verified by variation of the Hamiltonian~1.1!.
Bloch bands are given by the set of eigenenergiesm(k).

II. BLOCH BANDS

In Ref. @1#, we studied the tunneling between the tw
lowest bands to see how it is affected by the interaction.
found that the tunneling is described by a revised Land
Zener model, which we call the nonlinear Landau-Zen
model. This model predicts a dramatic change in the b
structure, a loop appearing at the Brillouin zone edgek5
61/2 for c/v.1 ~see Fig. 1!. A direct consequence of thi
loop structure is the breakdown of the Bloch oscillations d
to the nonzero adiabatic tunneling into the upper band.

The loop structure is confirmed by an exact soluti
found recently by Bronskiet al. @Eq. ~10! of Ref. @4##, which
assumes a much simpler form in terms of our notations:

cB~x!5a1eix/21a2e2 ix/2, ~2.1!

FIG. 1. Schematic drawing of the first and second Bloch ba
of a BEC in an optical lattice whenc.v. m is in units of
4\2kL

2/m; k in units of 2kL .
©2002 The American Physical Society01-1
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where a65(Ac2v6Ac1v/2Ac. Substituting it into Eq.
~1.3!, we havem5 1

8 1c. This solution exists only whenc
>v, and is a Bloch wave at the edge of the Brillouin zon
k51/2. This Bloch wave carries a nonzero veloc
Ac22v2/2c, while its complex conjugate has an oppos
velocity. This is in sharp contrast with the behavior in
linear periodic system, in which Bloch waves at the zo
edge always have zero velocity. This difference confirms
looped band structure. The solutioncB and its complex con-
jugate are the two degenerate states at the crossing poX
~Fig. 1!. The nonzero velocity carried by this Bloch wave
a manifestation of the superfluidity of the BEC. For fr
particles, the floweix/2 is stopped completely by Bragg sca
tering from the periodic potential; for the BEC, the flow ca
no longer be stopped when the superfluidity is strong, tha
c.v.

This loop structure is further supported by our numeri
calculation of the lowest bandm(k), as shown in Fig. 2. It is
evident that the slopedm/dk at the zone edgek561/2 be-
comes nonzero as the interaction strengthc is increased over
the periodic potential strengthv, a clear indication of the
loop structure. However, due to the limitation of our nume
cal method@2#, we are unable to produce the loop direct
An improved numerical method is being developed to cal
late the loop and the higher Bloch bands.

III. STABILITY OF BLOCH WAVES

In our second paper@2#, we studied the superfluidity an
stability of the Bloch waves in the lowest band~excluding
the loop!. We found that the Bloch waves in the middle
the Brillouin zone represent superflows, and the other Bl
waves toward the zone edge have both a Landau instab

FIG. 2. The lowest Bloch bands of BECs in an optical latti
obtained by numerical calculation. Top curve is forc50.05.v;
middle curve forc50.035v; bottom curve forc50.01,v. The
inset is an enlarged version of the tips. The units are the same
Fig. 1.
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and a dynamical instability. Moreover, we found that the
instabilities can disappear from all these Bloch waves wh
the atomic interaction is beyond certain critical values fo
fixed lattice strength. For easy reference, we call the crit
value for the Landau instabilitycL , and the critical value for
the dynamical instabilitycd . In that work, we were unable to
find these two critical values because our numerical met
was not good enough to find accurate Bloch waves at
zone edge. Now the exact solutioncB allows us to overcome
the difficulty and calculate these two critical valuescL and
cd . It is done by studying the stabilities of the Bloch wav
cB . Since the Bloch wave at the zone edge is the last on
become stable either in terms of the Landau instability
dynamically, the critical values ofc for cB to become stable
are justcL andcd .

The physical significance of the two critical valuescL and
cd of cB lies in the way the Bloch states atkÞ0 are achieved
experimentally: the Bloch state atk50 is first prepared and
then driven to the desired Bloch states atkÞ0 by accelerat-
ing the optical lattice@10#. Therefore, as the only point con
necting the loop to the rest of the Bloch band, a stablecB
means that the Bloch states on the loop can be accessed
studied experimentally by accelerating the optical lattice.

We first study the Landau instability by analyzing how t
energy of the system deviates under a small perturbat
Since the system is periodic, we are allowed to write
perturbation as

c5cB1eix/2@u~x,q!eiqx1v* ~x,q!e2 iqx#, ~3.1!

whereq ranges between21/2 and 1/2, labeling the pertur
bation mode, and the perturbation functionsu andv have a
periodicity of 2p in x. Then the energy deviation caused b
this perturbation is

dE5E
2`

`

dx~u* ,v* !M ~q!S u

v D , ~3.2!

where

M ~q!5S L~1/21q! cfB
2

cfB*
2 L~21/21q!

D , ~3.3!

with

L~k!52
1

2S ]

]x
1 ik D 2

2v cos~x!1c2
1

8
~3.4!

and

fB
25c1Ac22v2

2c
2

v
c

e2 ix1c2Ac22v2

2c
e22ix.

~3.5!

If M (q) is positive definite for all21/2<q<1/2, the Bloch
wavecB is a local minimum and a superflow. Otherwise,dE
can be negative for someq; the Bloch wave is a saddle poin
and has a Landau instability. As already noticed in Ref.@2#,
the positive definiteness of the matricesM (q) for all q’s is

in
1-2
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guaranteed by the positive definiteness ofM (0). Diagonal-
izing M (0) for different values ofc with a fixedv, we obtain
the critical valuecL , which is shown as a dashed line in Fi
3. For the intersection pointL at v50, we havecL51/4
5(k51/2)2.

The dynamical stability of the Bloch wavecB is studied
by linearizing the Gross-Pitaevskii equation:

i
]c

]t
52

1

2

]2c

]x21cucu2c1v cos~x!c. ~3.6!

With a procedure similar to the above, we arrive at the l
earized dynamical equation

i
]

]tS u

v D 5sM ~q!S u

v D , s5S I 0

0 2I D . ~3.7!

The dynamical stability is determined by the matrixsM (q).
If all sM (q) for 21/2<q<1/2 have no complex eigenva
ues, thencB is dynamically stable; otherwise, it is unstab
However, as pointed out in Ref.@2#, the dynamical instability
always starts at the perturbation modeq51/2. Therefore, we
need to diagonalize onlysM (1/2) to find the critical value
cd . The results are shown as the solid line in Fig. 3, wh
the intersectionD at v50 is preciselycd53/16. This lower
bound of the critical valuecd simply means that whenc
,3/16 any periodic potential brings the dynamical instabil
into the system.

FIG. 3. The critical values ofc. The dashed line iscL , the
critical value ofc for all the Bloch waves in the lowest band bein
superflows; the solid line iscd , above which all the Bloch waves in
the lowest band are dynamically stable.c5pn0as /kL

2 , andv is in
units of 4\2kL

2/m.
02560
-
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The value ofcd at pointD is confirmed by analyzing the
limiting casev!c, where the matrixsM (1/2) can be ap-
proximated with a 434 matrix:

sM ~1/2!'S c2
1

8
0 c 2v

0 c1
3

8
0 c

2c 0 2
3

8
2c 0

v 2c 0
1

8
2c

D .

~3.8!

The eigenvalues of this matrix can be found exactly; all
them are real only whenc.3/16. Note that the pointD must
be understood in the sense thatcd→3/16 asv→0 since pre-
cisely atv50 the system has no dynamical instability. A
one may get an impression from Fig. 3 that the asympto
behavior of the two curves at largev is linear, we want to
stress that it is not. Our numerical results show that
asymptotic behavior undergoes very small oscillations alo
a straight line, of which we have no complete understand
at this moment.

Finally, we make two remarks. First, the method of defi
ing Bloch waves and Bloch bands for the nonlinear syst
~1.1! at the beginning is a natural generalization from t
linear periodic system. Nevertheless, there is an essentia
ference due to the nonlinearity. In the linear system (c50),
the Bloch waves are the only extremum states of the Ham
tonian or the only eigenfunctions of Eq.~1.3!; for the non-
linear system~1.1!, there are possible extremum states th
are not Bloch waves.

Second, it is interesting to put the dynamical instabil
that is discussed in this report and in Refs.@2,4,5# into per-
spective. Usually, quantum dynamics is a regular motion
cause it has discrete eigenvalues and thus an almost per
motion regardless of whether its corresponding classical
namics is chaotic or not. In this sense, quantum chaos
been called ‘‘pseudochaos’’@13#. In contrast, the dynamica
instability that we have discussed is ‘‘true’’ quantum dynam
cal chaos that deserves more attention in the future. On
other hand, with the Madelung transformationc(x,t)
5r(x,t)eiS(x,t), the nonlinear Schro¨dinger equation~3.6! can
be turned into a set of equations of fluid dynamics. In t
regard, the quantum dynamical instability should be rela
to the turbulence in fluid dynamics, and we may call
‘‘quantum turbulence.’’
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