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Exact results for polaron and molecule in one-dimensional spin-1/2 Fermi gas
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Using exact Bethe ansatz solutions, we show that a spin-down fermion immersed into a fully polarized spin-up
Fermi sea with a weak attraction is dressed by the surrounding spin-up fermions to form the one-dimensional
analog of a polaron. As the attraction becomes strong, the spin-down fermion binds with one spin-up fermion
to form a tightly bound molecule. Throughout the whole interaction regime, a crossover from the polaron to a
molecule state is fully demonstrated through exact results of the excitation spectrum, the effective mass, binding
energy and kinetic energy. Furthermore, a clear distinction between the polaron and molecule is conceived by
the probability distribution, single-particle reduced density matrix, and density-density correlations, which are
calculated directly from the Bethe ansatz wave function. Such a polaron-molecule crossover presents a universal
nature of an impurity immersed into a fermionic medium with an attraction in one dimension.
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I. INTRODUCTION

Advances in trapping and manipulating cold fermionic
atoms have provided an experimental realization of various
many-body phenomena [1–4]. In particular, the recent obser-
vation of Fermi polarons in a three-dimensional (3D) tunable
Fermi liquid of ultracold atoms [5–7] provides insightful un-
derstanding of quasiparticle physics in many-body systems [8].
The Fermi polaron is a dressed spin-down impurity fermion
by the surrounding scattered fermions in a spin-up Fermi
sea. With increasing attraction, the single spin-down fermion
undergoes a possibly polaron-molecule transition in the
fermionic medium in 3D. The study of quasiparticle physics
and the dynamics of polarons and molecules in fermionic
medium has received much theoretical and experimental
attention [5,6,9–15]. In this context, all studies concerning
the first-order nature of the polaron-molecule transition in a
3D fermionic medium [9–11] involve variational ansatz with
some approximations that is ultimately not justified in low
dimensions [16,17]. It is therefore highly desirable to have
some rigorous results of such quasiparticle physics in different
mediums.

One-dimensional systems, in general, do not exhibit true
quasiparticles due to a strong collective nature at low tempera-
tures. However, such a collective behavior does not rule out the
existence of polarons for very few impurities immersed into
the bosonic or fermionic mediums. In contrast to the Fermi
liquid theory for the study of the Fermi polaron in 2D/3D, the
exact Bethe ansatz solutions are more capable of capturing
the microscopic origin of polarons and molecules [18–25].
In this regard, the 1D spin-1/2 δ-function interacting Fermi
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gas [26,27] is ideal for the study of a quantum impurity
problem [4,18–20]. The fundamental physics of this model
with arbitrary spin population imbalance is determined by a
set of transcendental equations which were found by Yang
using the Bethe ansatz (BA) hypothesis in 1967 [26]. This
model shows many interesting physical properties [4]. Here
we show that the exact BA solutions can be used to study the
different properties of polarons and molecules in the 1D Fermi
gases.

In this paper, using an exact BA solution, we rigorously
study Fermi polaron and molecule states in a 1D fermionic
medium. For weak attraction, the single spin-down impurity
gets dressed by the surrounding spin-up fermions to form a po-
laronlike quasiparticle. However, as the attractive interaction
grows, the spin-down fermion binds only one spin-up fermion
from the medium to gradually form a tightly bound molecule.
See the illustration in Fig. 1. In comparison with the previous
study [20], here we analytically and numerically calculate the
polaron energy, the binding energy, and the effective mass for
this impurity problem. Moreover, we obtain an explicit form of
the BA wave function of the single spin-down immersed in the
fully polarized Fermi sea. Using this exact wave function we
further calculate the distributions and the correlations of the
polaron and the molecule, which are the major quantities for
experimental measurements in these states. Our result provides
a microscopic origin of the polarons and molecules resulting
from quantum impurities.

The paper is organized as follows. In Sec. II, we derive
an explicit form of the Bethe wave function. In Sec. III, we
analytically and numerically calculate the excitation spectrum
with a precise determination of the effective mass and binding
energy. In Secs. IV and V we calculate the probability
distribution functions and correlation functions. We conclude
in Sec. VI.
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FIG. 1. Schematic configuration of the polaron-molecule
crossover of a single attractive impurity in the 1D Fermi gas. In the
weak attractive limit, the single impurity (red), a spin-down fermion
dressed by the surrounding scattered spin-up fermions (blue) from
the medium, behaves like a polaron (dashed oval) with an effective
mass m∗ ≈ m. For strong attraction, it binds with one spin-up fermion
from the Fermi sea to a tightly bound molecule (black circle) of two
atoms with an effective mass m∗ ≈ 2m.

II. MODEL AND BETH WAVE FUNCTION

We study the one-dimensional spin-1/2 Fermi gas called the
Yang-Gaudin model [26,27], where the fermions interact with
each other via the δ-function potential. Due to the symmetry
of the wave function, the interaction occurs only between two
fermions with different spins. The Hamiltonian of the system
thus has the form [26,27]

H =
∑

σ=↓,↑

∫
φ+

σ (x)

(
− �

2

2m

d2

dx2

)
φσ (x)

+ g1D

∫
φ+

↓ (x)φ+
↑ (x)φ↓(x)φ↑(x), (1)

where m is the atomic mass, g1D characterizes the strength
of the δ-function interaction, and the field operators φ↑ and
φ↓ describe the fermionic atoms in the states |↑〉 and |↓〉,
respectively. In this work we focus on the case where a
single spin-down fermion resides in the sea of N − 1 spin-up
fermions.

The system described by the Hamiltonian Eq. (1) is a
prototypical integrable model, which has been experimentally
realized with ultracold atoms trapped in 1D geometry [28,29].
In such 1D experiments, the waveguide atoms are tightly
confined in two transverse directions and weakly confined
in the axial direction. Consequently, the trapped atoms can be
effectively described by the Hamiltonian (1) within the local
density approximation [28–30] or by exact strong-coupling
ansatz wave functions of the trapped gas [25,31–33]. In these
experiments, the coupling constant g1D can be written as
g1D = �

2c/m, with c = −2/a1D , where a1D is the effective
1D scattering length. According to Ref. [34], a1D is related
to the 3D scattering length a3D as a1D = −a2

+/a3D + Aa+,
where a+ = √

�/(mω+) is the transverse oscillator length and
A ≈ 1.0326 is a constant. For repulsive fermions, c > 0 and
for attractive fermions, c < 0. The Bethe ansatz solutions of
the model provide a precise understanding of many-body

phenomena and few-body physics; see review [4]. In this
paper we focus on the model (1) with attractive interaction
and periodic boundary conditions.

The Bethe wave function of the model Eq. (1) is very
complicated. With the help of Takahashi’s Bethe ansatz wave
function [35], we first simplify the Bethe wave function of
an energy eigenstate for the case with the N th fermion being
spin-down, i.e.,

f↓N
(x1,x2, . . . ,xN ) =

N∑
l=1

∣∣∣∣∣∣∣∣∣

a11 · · · a1,N−1

. . .

. aij .

. . .

aN−1,1 · · · aN−1,N−1

∣∣∣∣∣∣∣∣∣
eiklxN ,

(2)

where

aij = [kl+j − λ + ic′sgn(xN − xi)]e
ikl+j xi (3)

if l + j � N ; for other cases,

aij = [kl+j−n − λ + ic′sgn(xN − xi)]e
ikl+j−Nxi . (4)

The wave function for the four-body case is given explicitly in
Appendix A. In the above wave function, we denote c′ = c/2,
and λ is the spin rapidity parameter, {kj } with j = 1,2, . . . ,N

are the quasimomenta of fermions. They can be determined by
the Bethe ansatz equations [26] (also see below).

The total wave function of our system should be antisym-
metric under the permutation of any two fermions. To construct
this total wave function, we define

f↓j
(x1, . . . ,xj , . . . ,xN ) = −f↓N

(x1, . . . ,xN , . . . ,xj ), (5)

where the subscript ↓j means that the j th fermion is spin-
down, while the rest of the fermions are spin-up. As a result,
the total wave function takes the form

ftot = 1√
G

N∑
j=1

f↓j
|↓j 〉 , (6)

and G is the normalization constant and |↓j 〉 denotes a spin
state with the j th spin down and all other spins up.

For solving our problem, we write the following BA
equations [26]:

kj − λ + ic′

kj − λ − ic′ = exp(ikjL), (7)

N∏
j=1

kj − λ + ic′

kj − λ − ic′ = 1. (8)

The corresponding eigenenergy is given by

E =
N∑

j=1

�
2k2

j

2m
. (9)

This problem of N − 1 fermions of the up-spin and one
fermion of the opposite spin was studied by McGuire in 1965
and 1966 [18,19], who calculated only the energy shift caused
by the extra spin-down fermion. However, the key feature of
this impurity problem is the collective behavior of polarons
and molecules, which lacks a comprehensive understanding.
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In the rest of the paper (except Sec. IV), for convenience and
without loss of generality, we consider only the cases where
N is even.

III. POLARON AND MOLECULE

When a single attractive impurity is immersed in the fully
polarized Fermi sea, an intuitive picture immediately arises, as
illustrated schematically in Fig. 1. The single impurity will be
addressed by a cloud of fermions due to attraction. When the
impurity moves, it will drag these fermions along. Effectively,
it can be regarded as a new particle with a different mass
moving freely. This is the well-known polaron. When the
attraction becomes very strong, the impurity can pair with one
fermion to form a molecule. This nature is reflected by Haldane
generalized exclusion statistics [36–40], i.e., the statistical
interaction and dynamical interaction are transmutable in 1D.
For a weak attraction, we see that the quasimomentum of a
spin-down fermion essentially depends on that of all spin-up
fermions. This gives a statistical nature of polaron, namely
mutual statistics [37,41]. Whereas for a strong attraction, the
spin-down fermion tightly bounds with a spin-up fermion from
the fully polarized Fermi sea. In this circumstance, the statistics
of the bond pair reveals a nonmutual statistics.

To rigorously establish such a transition, we examine the
energy shift caused by the impurity and see how it changes with
the interaction strength. When there is no interaction, the single
spin-down fermion can share a momentum with a spin-up
fermion. This implies mathematically that there exists a pair
of k’s, say, kN−1 and kN , such that kN−1 = kN = p. When
the attractive interaction between spin-up fermion and spin-
down fermion is turned on, these two momenta can become a
pair of complex conjugates, kN−1,N = p ± iβ, indicating the
formation of a polaron or molecule.

A. Weak coupling

We first consider the weak-coupling limit, L|c| 	 1. In this
limit, it is straightforward to find that p ≈ λ and β ≈ √|c|/L.
With these two facts [20], we can readily obtain from Eqs. (7)
and (8)

p ≈ 2npπ

L
− 1

2

N−2∑
j=1

|c|
2(np − nj )π

, (10)

kj ≈ 2njπ

L
− |c|

2(nj − np)π
, (j = 1, . . . ,N − 2), (11)

where nj and np are integers and nj 
= np. According to the
Fermi statistics, for the lowest energy state, we have nj =
±1,±2, . . . ,(N − 2)/2 (for details, see Appendix B). From
the above equations, we can calculate the energy of the system
with a single spin-down fermion,

E = �
2

2m

⎛
⎝−2β2 + 2p2 +

N−2∑
j=1

k2
j

⎞
⎠

≈ − �
2

2m

2(N − 1)|c|
L

+ �
2q2

2m
+ E0, (12)

where q = 2npπ/L and E0 is the ground-state energy of
the system when there is no interaction, that is, c = 0. For
np = 0, we recover the ground-state energy of the gas with
N − 1 spin-up fermions and one spin-down fermion given by
McGuire [18,19].

The energy expression (12) naturally gives the dispersion of
a polaronlike quasiparticle moving slowly in the fully polarized
Fermi sea. It provides a rich insight into such collective
nature of a polaron: (1) The first term is the mean binding
energy, showing that the spin-down fermion experiences a
mean-field attraction from the fully polarized Fermi sea; (2)
the second term is the kinetic energy of a single classical
particle with momentum �q and mass m. When c = 0, this is
just the kinetic energy for the newly added spin-down fermion.
When c 
= 0 but small, this kinetic energy does not change its
form even though the spin-down fermion is interacting with
spin-up fermions and has lost its individual character. In this
regard, one can view the spin-down fermion addressed by the
surrounding spin-up fermions as a polaron. In one dimension,
such a polaronic behavior is a typical elementary excitation
with infinite lifetime due to the reshuffle of the eigenstates
in excitations. When c becomes bigger, the effective mass
of the polaron will be different from the bare mass m (the
leading-order contribution is proportional to c2), but the overall
picture remains the same: a Fermi sea, a binding energy
Eb = − �

2

2m

2(N−1)|c|
L

, and a classical particle with an effective
mass m∗.

The above results are valid up to the first order of cL.
The results to the second order of cL can be found in the
Appendix B. There is a correction to the binding energy.
However, it is very hard to calculate the effective mass of
the polaron for the order over the first order of cL.

B. Strong coupling

We now consider the strong-coupling limit, |c|L � 1.
Using (|c|L)−1 as the perturbation parameter [20], we find
p and the N − 2 real momenta

p ≈ npπ

L
−

N−2∑
j=1

2njπ

|c|L + 2(N − 2)npπ

|c|L , (13)

kj ≈ njπ

L
+ 4njπ − 4npπ

|c|L , (14)

with nj = ±1,±3, . . . ,±(N − 3) and np is an arbitrary inte-
ger. In addition, we find β ≈ |c|/2. Therefore, the total energy
is

E = �
2

2m

⎛
⎝−2β2 + 2p2 +

N−2∑
j=1

k2
j

⎞
⎠

= − �
2

2m

[
c2

2
+

(
1 + 8

|c|
)

(2N − 1)(N − 2)π2

L2

]

+
[

1

2
+ 2(N − 2)

|c|
]

�
2q2

2m
+

(
1 + 8

|c|
)

E0. (15)

Similar to the case of weak coupling, this energy has three
terms: the binding energy, the kinetic energy, and the Fermi sea
energy. However, all of them are different, and even the Fermi

043645-3



RUNXIN MAO, X. W. GUAN, AND BIAO WU PHYSICAL REVIEW A 94, 043645 (2016)

−20 −10 0
−400

−200

0

200

γ

bi
nd

in
g 

en
er

gy

numerical
analytical 

FIG. 2. Binding energy Eb. The solid line is the numerical result
and the circles represent the result from the analytical expressions (17)
and (19) for strong and weak attractions, respectively. The unit of
energy is �

2n2

2m
and γ is the dimensionless interaction strength. Here

N = 10, L = 1.

sea energy is slightly modified by the strong interaction. In
particular, the kinetic energy can be regarded as a quasiparticle
with effective mass

m∗ ≈ 2m

[
1 − 4(N − 2)

L|c|
]
, (16)

which is almost twice the bare mass m. After a subtraction of
the ground-state energy and chemical potential within Eq. (15),
we obtain the binding energy of the molecule state

Eb = �
2

2m

{
−c2

2
+ 8π2

3|γ |
}
, (17)

where γ = c/n is a dimensionless interaction strength.

C. General case

The above two limiting cases show that the total energy of
the system can be divided into three parts,

E = E0 + Eb + �
2q2

2m∗ . (18)

E0 is the Fermi sea energy, the ground-state energy of N free
fermions; Eb is the binding energy; and the last term is the
kinetic energy of the quasiparticle, i.e., dispersion of a polaron.
In the weak-coupling limit, the binding energy is

Eb ≈ − �
2

2m

2|c|
L

(N − 1) = 2γ
�

2n2

2m
, (19)

where n = N/L is the density of the particle. In the strong-
coupling limit, the binding energy is given by (17).

A crossover from a polaron to the molecule is seen for an
intermediate interaction strength; i.e., the total energy of this
system can be divided into three parts, as indicated in (18).
However, in general, the BA equations in Eqs. (7) and (8)
cannot be solved analytically. We have to resort to a numerical
method. To compute the binding energy Eb, we compute the
ground state of the system and then subtract out E0. The
numerical results with N = 10, L = 1 are shown in Fig. 2. We
observe that our numerical results agree well with analytical
expressions (17) and (19) in the weak and strong-coupling
limits.

For the kinetic energy, we compute the system energy for
a given momentum q and then subtract out E0 and Eb. The
results are plotted in Fig. 3(a), where the kinetic energy is seen
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FIG. 3. (a) The kinetic energy as a function of the square of the
momentum q for different values of interaction strength. The unit
of energy is �

2/(2mL2) and the unit of q2 is L−2. (b) Effective mass
m∗/m as a function of interaction strength c. The line is the numerical
result and the circles denote the analytical result obtained from (16)
for the strong-coupling regime. For the weak-coupling regime, the
leading-order contribution to the effective mass is identified as an
order of c2. The mass ratio m∗/m has no unit and the unit of c is L−1.
Here N = 10 and L = 1.

to grow as a power of q2. By extracting the slope, we can
compute the effective mass m∗, which is shown in Fig. 3(b). In
the weak-coupling limit, we indeed see that m∗ approaches the
bare mass m. In the strong-coupling limit, the numerical result
of m∗ agrees well with our analytical result (16), i.e., m∗ ≈
2m(1 − 4

|γ | ). These results fully confirm the polaron behavior
in the problem of such a spin-down fermion immersed into a
fully polarized Fermi sea in 1D.

IV. PROBABILITY DISTRIBUTION FUNCTION
OF THREE FERMIONS

It is interesting to see what these polarons or molecules look
like from weak to strong interactions. For this purpose, we need
to plot the wave function in the real space. Because the visual
dimensions are restricted to up to three dimensions, we can,
at most, plot the wave function of three fermions. To further
simplify the situation, we plot the probability distribution for
fixing one of the fermions at x3 = L/2. From Eq. (6), we have
the distribution function

ρ(x1,x2) = |ftot(x1,x2,L/2)|2

= 1

G
{|f↓1 (x1,x2,L/2)|2 + |f↓2 (x1,x2,L/2)|2

+ |f↓3 (x1,x2,L/2)|2}. (20)

Here G is the normalization factor.
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FIG. 4. Probability distribution of the ground state in the case of
three fermions for c = 0,−1,−4,−40. When c = 0, the ground state
corresponds to {k1,k2,k3} = {0,0,2π/L}. Here the distribution unit
is L−3.

We focus on the ground state. In the case of c = 0, this
means that we have {k1,k2,k3} = {0,0,2π/L} and

ρ(x1,x2) = 1

L3

{
1 + 1

3
cos

(
2π

L
x1

)
+ 1

3
cos

(
2π

L
x2

)

− 1

3
cos

[
2π

L
(x1 − x2)

]}
. (21)

The probability distributions are plotted for four different
values of c. in Fig. 4. When c = 0, the probability is the
smallest one in the vicinity of x1 = x2 = x3 since the three
fermions do not like to cluster together. For the weak attraction,
c = −1, the probability distribution looks very similar to
the case c = 0. However, as the attraction gets stronger, the
distribution changes dramatically. As shown in Fig. 4, for
c = −4, there is a concentrated red area around the point
x1 = x2 = x3, implying that the two fermions form a bound
pair which tends to stay with the excess fermion under a
strong attraction. This is a clear indication of the crossover
region from a polaron to a molecule. When the attraction is
very strong, e.g., c = −400, the probability is significantly
different from zero only in a small area around x1 = x2 = x3

and around the three lines, x1 = x3, x2 = x3, x1 = x2. This
signals the formation of a molecule. Note that the probability
is exactly zero at x1 = x2 = x3 due to the Fermi statistics.

V. CORRELATIONS

With the wave function in Eq. (6), we can compute various
correlation functions, from which we can gain more insights
into the properties of polarons and molecules. We focus on the
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FIG. 5. One-body correlations of the ground state at c = 0,

−0.04,−40,−400. When c = 0, the momenta are {0,0,±2π,

±4π,±6π}. The black lines are the numerical results of the real
part of the correlation function; the open circles denote the analytical
results of c = 0. The insets show the absolute values of the one-body
correlations for N = 8. Here the unit of correlations is L−1.

one-body correlation function [42,43] and the density-density
correlation function [44,45].

A. One-body correlation function

The one-body correlation function is, in fact, the reduced
one-body density matrix. It can be regarded as the probability
of creating a particle at the position x while annihilating a
particle at the position x ′ at the same time. For our system, there
are two types of such a correlation function, 〈a+

↑ (x)a↓(x ′)〉
and 〈a+

↑ (x)a↑(x ′)〉. The former is clearly zero since we cannot
annihilate one spin-down fermion at x ′ and create one spin-up
fermion at x. For the latter, without loss of generality, we set
x ′ = L/2 and have〈

a+
↑ (x)a↑

(
L

2

)〉
= 1

G

∫
· · ·

∫
dx2 · · · dxN

×
⎧⎨
⎩

N∑
j=2

f ∗
↓j

(x,x2, . . . ,xN )

× f↓j

(
L

2
,x2, . . . ,xN

)⎫⎬
⎭. (22)

Here the wave function was normalized.
When c = 0, we can easily calculate the correlation

function〈
a+

↑ (x)a↑

(
L

2

)〉
= 1

L

{
(−1)

N−2
2

N − 1

cos
[ (N−1)πx

L

]
cos

(
πx
L

)
}

≈ 1

L

{
(−1)

N
2

N

cos(kF x)

cos
(

πx
L

)
}

, (23)

where kF = Nπ/L is the Fermi wave vector of the system.
When c 
= 0, we have to rely on the numerical method,
except the limit cases [46]. The multidimensional integration
in Eq. (22) is done with the Monte Carlo (MC) method and
the results for N = 8 are shown in Fig. 5. In general, the
one-body correlation function is complex. For the cases studied
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here, the imaginary parts of the correlation functions are small.
Therefore, shown in Fig. 5 are the real parts of the one-body
correlation functions; the absolute values are shown in the
insets.

The correlation functions for different values of interaction
strength in Fig. 5 show peaks around x = L/2 and then decay
off over large distance, a common feature of all correlation
functions. Their decay tails are oscillatory. The oscillation
period is 2π/kF , as indicated in Eq. (23), and it changes
little as the attractive interaction gets stronger. The absolute
values of the correlation function are shown in the insets,
where the oscillation period is π/kF , which is the same as
the Friedel oscillations [47]. This is expected as the cause of
the oscillations in Fig. 5 and also as the cause of the Friedel
oscillations.

Another interesting feature in Fig. 5 is that the correlation
decays faster when the attractive interaction gets stronger.

B. Density-density correlation functions

There are two types of density-density correlations: one
between up-spins and the other between up- and down-spins.
The density-density correlation between up-spins is〈

a+
↑ (x)a↑(x)a+

↑

(
L

2

)
a↑

(
L

2

)〉

=
∫

· · ·
∫

dx3 · · · dxN

1

G

⎧⎨
⎩

N∑
j=3

f ∗
↓j

(
x,

L

2
,x3, . . . ,xN

)

× f↓j

(
x,

L

2
,x3, . . . ,xN

)⎫⎬
⎭. (24)

This correlation function indicates a probability to find a spin-
up fermion at x when there is a spin-up fermion at L

2 . When
c = 0, this correlation function is calculated in a straight
forward way〈

a+
↑ (x)a↑(x)a+

↑

(
L

2

)
a↑

(
L

2

)〉

= 1

L2

{
N − 1

N − 2
− cos

[ (2N−3)πx

L

]
2(N − 1)(N − 2) cos

(
πx
L

)
+ sin

(
πx
L

)
sin

[ (2N−3)πx

L

] − 1

2(N − 1)(N − 2) cos2
(

πx
L

)}

≈ 1

L2

{
1 + cos

(
2kF x + πx

L

)
2N2 cos

(
πx
L

)
+ sin

(
πx
L

)
sin

(
2kF x + πx

L

) − 1

2N2 cos2
(

πx
L

) }
. (25)

As shown in Fig. 6, this function is zero at x = L/2 and
approaches a constant when x is far away from L/2. The zero
value of the density-density correlation at x = L/2 is due to the
Pauli exclusion principle: There can only be one fermion with
up-spin at x = L/2. When x is far away from L/2, the effect
of the exclusion principle becomes weak and the probability
of finding another up-spin fermion becomes a constant as the
system is uniform.
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FIG. 6. Density-density correlations between up-spins in the
ground sate for c = 0,−0.04,−40,−400. When c = 0, the momenta
are {0,0,±2π,±4π,±6π}. The black lines are the numerical results;
the red line is the analytical result of c = 0. N = 8. The unit of length
is L and the unit of correlations is L−2.

When c 
= 0, the density-density correlations are computed
numerically and the results are plotted in Fig. 6 for N = 8.
We observe in this figure that the interaction does not change
the overall feature of the correlation function. It appears that
the amplitude of the oscillatory tail is suppressed by the strong
interaction. However, due to the limitation of the accuracy of
the numerical results, it is hard to quantify this suppression.

The density-density correlations between up-spin and
down-spin is〈

a+
↑ (x)a↑(x)a+

↓

(
L

2

)
a↓

(
L

2

)〉

= 1

G

N−1∑
j=2

∫
· · ·

∫
dx2 · · · dxj−1dxj+1 · · · dxN

×
{
f ∗

↓N

(
x,x2, . . . ,xj−1,

L

2
,xj+1, . . . ,xN

)

× f↓N

(
x,x2, . . . ,xj−1,

L

2
,xj+1, . . . ,xN

)}
, (26)

which gives us the probability to find a spin-up fermion at
x when there is a spin-down fermion at L

2 . When c = 0,
this density-density correlations is a constant and equal to
1/[(N − 1)L2]. This reflects the fact that when there is no
interaction the presence of a down-spin fermion does not
affect the density of up-spin fermions. When c 
= 0, the
correlation functions are computed numerically and the results
are shown in Fig. 7(a) for N = 8. From the figure, we see that
a peak immediately emerges when the attractive interaction
is turned on. This results from the formation of polaron. As
the interaction gets stronger and stronger, the peak becomes
narrower and narrower. This signature indicates a crossover
from the polaronlike behavior to the tightly bound molecule.
Furthermore, the full widths at half maximum (FWHM) as a
function of interaction strength is plotted in Fig. 7(b).

The density-density correlation function characterizes the
interference of two particles. The measurement of many-body
correlations was carried out for bosons via a single atom
detector, where the many-body Wick’s theorem provides a
significant theoretical input [48]. It is highly desirable to
adapt this experimental technique to measure many-body
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FIG. 7. (a) Density-density correlations between up-spin and
down-spin in the ground sate for c = 0,−0.04,−4,−40,−100.
For clarity, the curves for c 
= 0 have shifted upwards by
0.1,0.2,0.3,0.4, respectively. When c = 0, the momenta are
{0,0,±2π,±4π,±6π}. The different symbol lines are the numerical
results for different interaction; the red circles are the analytical result
for c = 0. (b) The full width at half maximum (FWHM) as a function
of the interaction strength c. N = 8. The unit of length is L, the unit
of correlations is L−2, and the unit of c is L−1.

correlations for interacting fermions. On the other hand, in
the cold-atoms experiment, one can overlap a time-of-flight
image with its copy that is shifted by x. Integrating over the
overlapped region, then one may measure the density-density
correlation of x. In fact, in current experiments with ultracold
atoms, the radio-frequency spectroscopy of the ultracold atoms
is often used to demonstrate the quasiparticle behavior of
the impurity problems [5–7,49,50]. The shifts and widths
of the spectra are conveniently used to read off the average
binding energy and lifetime of a polaron. To this end, the
spectral function A(k,ω), which gives the probability of
finding the state with a frequency ω and momentum �k, is
of central importance in the problems of this kind. Once we
turn on the interaction, the spectral function A(k,ω) thus
contains Lorentzian peaks. However, the spectral function
is related to the single-particle Green’s function (retarded
Green’s function); i.e., A(k,ω) = −1

π
ImGret(k,ω) is cumber-

some for computing in general. We will consider this study
elsewhere.

VI. CONCLUSION

We have studied the formation of polaron and molecule
when one spin-down fermion is placed in a sea of free up-spin
fermions. It shows that as the attractive interaction between
up-spin and down-spin fermions increases, the spin-down
fermions is dressed up by the surrounding ones from the Fermi

sea to form a polaron, whereas for an strong attraction the
single spin-down fermion tightly bounds one spin-up fermion
to form a molecule. We have obtained analytically the effective
masses, binding energies and kinetic energies of the polaron
and molecule. We have also numerically calculated these
key properties for a whole interacting regime. The numerical
results confirm the novel nature of the crossover from polaron
to molecule in the 1D impurity problem. For the further study
of this problem, we have numerically calculated the probability
distribution function and the one-body and density-density
correlation functions from which the nature of the polaron
and the molecule in 1D is demonstrated. Our results provide
a precise understanding of such typical collective many-body
phenomenon caused by quantum impurity. Our method can be
directly applied to the impurity problems in different mediums
with integrability.
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APPENDIX A: THE FOUR-BODY WAVE FUNCTION

The wave function for the four-fermion case is

f↓4 (x1,x2,x3,x4)

=
∣∣∣∣∣∣
(k2 − λ̃)eik2x1 (k3 − λ̃)eik3x1 (k4 − λ̃)eik4x1

(k2 − λ̃)eik2x2 (k3 − λ̃)eik3x2 (k4 − λ̃)eik4x2

(k2 − λ̃)eik2x3 (k3 − λ̃)eik3x3 (k4 − λ̃)eik4x3

∣∣∣∣∣∣eik1x4

+
∣∣∣∣∣∣
(k3 − λ̃)eik3x1 (k4 − λ̃)eik4x1 (k1 − λ̃)eik1x1

(k3 − λ̃)eik3x2 (k4 − λ̃)eik4x2 (k1 − λ̃)eik1x2

(k3 − λ̃)eik3x3 (k4 − λ̃)eik4x3 (k1 − λ̃)eik1x3

∣∣∣∣∣∣eik2x4

+
∣∣∣∣∣∣
(k4 − λ̃)eik4x1 (k1 − λ̃)eik1x1 (k2 − λ̃)eik2x1

(k4 − λ̃)eik4x2 (k1 − λ̃)eik1x2 (k2 − λ̃)eik2x2

(k4 − λ̃)eik4x3 (k1 − λ̃)eik1x3 (k2 − λ̃)eik2x3

∣∣∣∣∣∣eik3x4

+
∣∣∣∣∣∣
(k1 − λ̃)eik1x1 (k2 − λ̃)eik2x1 (k3 − λ̃)eik3x1

(k1 − λ̃)eik1x2 (k2 − λ̃)eik2x2 (k3 − λ̃)eik3x2

(k1 − λ̃)eik1x3 (k2 − λ̃)eik2x3 (k3 − λ̃)eik3x3

∣∣∣∣∣∣eik4x4 ,

(A1)

where λ̃ = λ − ic′sgn(x4 − xi) (i is the index of k in one term).

APPENDIX B: ANALYTICAL SOLUTIONS
OF THE BETHE ANSATZ EQUATIONS

In this Appendix, we offer detailed derivation for the
solutions of the BA equations Eqs. (7) and (8) up to the
second order in both the weak- and-strong interaction limits.
To simplify the notations, we make the following change of
variables:

k̃j = kjL, c̃′ = c′L, λ̃ = λL. (B1)
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Equations (7) and (8) then become

k̃j − λ̃ + ic̃′

kj − λ − ic̃′ = exp(ik̃j ), (B2)

N∏
j=1

k̃j − λ̃ + ic̃′

k̃j − λ̃ − ic̃′ = 1. (B3)

Without causing confusion and for convenience, we drop tilde
first and recover it at the end. That is, we now use

kj − λ + ic′

kj − λ − ic′ = exp(ikj ), (B4)

N∏
j=1

kj − λ + ic′

kj − λ − ic′ = 1. (B5)

There are infinite solutions. We focus on the solutions near the
ground state.

1. Weak-interaction limit

In the ground state of the noninteracting case c = 0,
the up-spin fermions occupy the momentum states {0,±1,

±2, . . . ,±(N − 2)/2}2π (N is assumed to be even in the main
text) and the sole down-spin fermion has zero momentum.
The small excitation state corresponds to that the down-spin
takes up nonzero momentum. In all these states, there is only
one momentum state that is occupied by both up-spin and
down-spin fermions. If this momentum state is kp = 2npπ , the
total momentum q of the system is given by this momentum
and we have q = 2npπ . Our focus is on these states.

We now turn on a small attractive interaction. The common
momentum shared by the up- and down-spin is split into two
k±
p = p ± iβ, while all the other momenta are shifted as kj =

2njπ + δkj . Our aim is to compute p, β, and δkj . Note that
despite of the change of each momentum kj by the interaction,
the total momentum q of the system remains unchanged. We
still have q = 2npπ . This is because the interaction is between
fermions and is incapable of changing the total momentum.

For kj = 2njπ + δkj , we have from Eq. (B4)

exp(ip − β) = p − λ + i(β + c′)
p − λ + i(β − c′)

, (B6)

exp(ip + β) = p − λ − i(β − c′)
p − λ − i(β + c′)

, (B7)

which lead to

tan p = 2c′(p − λ)

(p − λ)2 + (λ2 − c′2)
, (B8)

(p − λ)2 = −β2 − c′2 + c′ 2λ(e−2β + 1)

e−2β − 1
. (B9)

So, when c → 0,(p − λ) → 0. Since p = 2npπ at c = 0, we
know that λ → 2npπ as c → 0. This means that kj − λ ∼ 2π .
Knowing this fact of the weak-coupling limit, we have from

Eq. (B4) to the first order of c

1 + ic′
kj −λ

1 − ic′
kj −λ

= exp(ikj ), (B10)

1 + ic

2(nj − np)π
≈ 1 + i(kj − 2njπ ). (B11)

We then have

kj ≈ 2njπ − |c|
2(nj − np)π

. (B12)

As the total momentum q = 2p + ∑
j kj = 2npπ , we have

p ≈ 2npπ + 1

2

N−2∑
j=1

|c|
2(nj − np)π

. (B13)

Note that in the above summation and any following summa-
tion involving nj − np we always assume that nj 
= np.

After canceling λ from Eqs. (B8) and (B9) we have

−β2 − c′2 + c′ 2β

e−2β − 1
(e−2β + 1)

= tan2 p

(
e−2β + 1

e−2β − 1
β − c′

)2

. (B14)

Since tan2 p = tan2(p − 2npπ ) ∼ c2, we have to have
β ≈ √|c|. So the system energy up to the first order of c

is

E = �
2

2m

⎛
⎝−2β2 + 2p2 +

N−2∑
j=1

k2
j

⎞
⎠

≈ − �
2

2m

2(N − 1)|c|
L

+ �
2q2

2m
+ E0. (B15)

We have now computed p, kj , and β to the lowest order.
We next try to compute p, kj , and β to the next order. We
write

p = 2npπ + p(1) + p(2) + · · · , (B16)

kj = 2njπ + k
(1)
j + k

(2)
j + · · · , (B17)

β =
√

|c| + β(2), (B18)

where p(1) and k
(1)
j are already computed in the above. We

have from Eq. (B10)

1 + ic′

2nj π+k
(1)
j −2npπ−2p(1)

1 − ic′

2nj π+k
(1)
j −2npπ−2p(1)

≈ exp(ikj ) (B19)

2ic′

2njπ − 2npπ
− 2i

(
k

(1)
j − 2p(1)

)
c′

(2njπ − 2npπ )2
+ 2

(
ic′

2njπ − 2npπ

)2

≈ i
(
k

(1)
j + k

(2)
j

) −
(
k

(1)
j

)2

2
. (B20)

This leads to

k
(2)
j = − c2

8(nj − np)2π3

{
1

nj − np

+
N−2∑
i=1

1

ni − np

}
. (B21)
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We again use that q = 2p + ∑
j kj = 2npπ to find

p(2) = c2

16π3

⎧⎨
⎩

N−2∑
j=1

1

(nj − np)3

+
N−2∑
j=1

N−2∑
i=1

1

(nj − np)2(ni − np)

⎫⎬
⎭. (B22)

Through the Taylor expansion, we have from Eq. (B14)

−β2 − c′2 − 2c′ 1 − β + β2

1 − β + 2β2/3
≈ (p(1))2, (B23)

−β2 − c′2 + |c|
(

1 + β2

3

)
≈ (p(1))2. (B24)

From this we obtain

β(2) ≈ |c|3/2

24
− (p(1))2

2
√|c| . (B25)

With the above results, we have the second-order energy,

E(2) = − �
2

2m

⎧⎨
⎩c2

6
+ c2

2π2

N−2∑
j=1

1

(nj − np)2

⎫⎬
⎭. (B26)

Note that in the above summation we have nj 
= np and the
units have been restored. It is not clear how to extract a
term which is proportional to n2

p and obtain the second-order
correction to the effective mass.

2. Strong-interaction limit

We now consider the strong-coupling limit, i.e., |c| � 1,
where we compute everything up to the first order of 1/|c|. In
this limit we have β � 1 and, thus, e−2β 	 1. From Eq. (B9),
we have

(p − λ)2 ≈ −β2 − c′2 − 2βc′(1 + e−2β )2

≈ −(β + c′)2 − 4βc′e−2β

≈ −(β + c′)2. (B27)

This gives us

p ≈ λ, β ≈ −c′ = |c|/2. (B28)

In the limit of |c| → ∞, if the system is stable near the ground
state, kj and p must be finite. With Eq. (B4) this implies that
exp(ikj ) → −1 and kj → njπ , with nj being an odd integer.
Combining Eq. (B4) and Eq. (B5) we have e−2ip = ei

∑
j kj .

This means that we have e2ip → (−1)N−2 in the limit of
|c| → ∞. As N is even (which is assumed in this work),
we have p → npπ , with np being an arbitrary integer.

With the above results we have

exp(ikj ) ≈ kj − p + ic′

kj − p − ic′ (B29)

1 + i[kj − njπ ] ≈ −i(nj − np)π/c′ + 1

i(nj − np)π/c′ + 1
(B30)

kj ≈ njπ + 4π (nj − np)

|c| , (B31)

with nj being odd integers. As q = ∑
j kj + 2p = 2npπ , we

have

p ≈ npπ −
N−2∑
j=1

2njπ

|c| + 2(N − 2)npπ

|c| . (B32)

From all the above results, it is clear that the ground state of
the system in the limit of |c| → ∞ corresponds to that nj takes
values of ±1,±3,±5, . . . ,±(N − 3), while np = 0. np 
== 0
corresponds to excited states.

So the system’s energy up to the order 1/|c| is

E = �
2

2m

⎛
⎝−2β2 + 2p2 +

N−2∑
j=1

k2
j

⎞
⎠

= − �
2

2m

[
c2

2
+

(
1 + 8

|cL|
)

(2N − 1)(N − 2)π2

L2

]

+
[

1

2
+ 2(N − 2)

|cL|
]

�
2q2

2m
+

(
1 + 8

|cL|
)

E0. (B33)

The effective mass can be extracted from the kinetic part of
the energy and it is

m∗ ≈ 2m

[
1 − 4(N − 2)

L|c|
]
. (B34)
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