Scanning Tunneling Microscopy Study of Adsorbate/Surface Interactions and Dynamics

Zonghai Hu

School of Physics, Peking University, Beijing, China 100871

Outline

Introduction to scanning tunneling microscopy (STM)

An example of STM applications – study of H/Si(001)

Other STM applications – current research interest

Invention of STM

G. Binnig and H. Rohrer, Helv. Phys. Acta 55, 726 (1982).(IBM Zurich)

Noble Prize 1986 (photo by C.Chen)

One Dimensional Square Barrier – Tunneling Effect

Take U-E as the work function Φ , then the characteristic length $1/\kappa \sim 0.1$ nm Qualitatively tunneling current extremely sensitive on barrier width Atomic resolution: lateral ~ 0.1nm, vertical ~ 0.01nm

Quantitative Description – Modified Bardeen's method

See the tunneling process as transition between states, follows *Fermi's Golden Rule*:

$$T = \frac{2\pi}{\hbar} |M_{\mu\nu}|^2 \delta(E_{\mu} - E_{\nu}) \quad \text{where} \quad M_{\mu\nu} = -\frac{\hbar^2}{2m} \oiint_{\Sigma} (\chi_{\nu}^* \nabla \Psi_{\mu} - \Psi_{\mu} \nabla \chi_{\nu}^*) dS$$
$$I = \frac{2\pi e}{\hbar} \sum_{\mu\nu} \left\{ f(E_{\mu}) [1 - f(E_{\nu} + eV)] \bullet |M_{\mu\nu}|^2 \delta(E_{\mu} - E_{\nu}) \right\}$$

In the limit of small bias voltage and low temperature :

$$I = \frac{2\pi e^2 V}{\hbar} \sum_{\mu\nu} \left\{ \delta \left(E_{\mu} - E_{\nu} \right) M_{\mu\nu} \right\}^2$$

Assuming spherical tip and s wave function of tip:

$$\frac{dI}{dV} \propto \sum_{E_f - eV}^{E_f} |\Psi_v(r_0)|^2 \propto \rho_s(r_0, E_f - eV) \longrightarrow \mathbf{LDOS}$$

J. Bardeen, Phys. Rev. Lett. 6, 57 (1961).

J. Tersoff and D. R. Hamann, Phys. Rev. B 31, 805 (1995).

STM Instrumentation and Operation

Vibration isolation: spring, air leg, Eddie current...

Current amplifier

Electrical noise reduction

Accurate positioning: piezoelectric drive ~0.1nm/V

Feedback loop

STM Applications

Surface structure: semiconductor, metal, layered material...

Nucleation and growth

- → Adsorbate on surface: inorganic, organic
- Scanning tunneling spectroscopy: LDOS and electronic structure

STM variations: SPSTM, STM-IETS, AFM...

Atom manipulation and surface modification

Motivations to study H/Si(001)

→ H/Si(001): Growth of Si from SiH₄ or similar compounds Prototype for adsorbate/semiconductor interactions → STM as a powerful tool not only for structure but also for dynamics

- 1. Adsorbate-adsorbate interactions for H/Si(001)
- 2. Adsorbate-surface interaction dynamics

Si(001) surface reconstruction

sideview of dimer formation:

Si(001) 2×1 dimer row structure

10 nm × 10 nm, -2 V, 0.6 nA

Each DB can be occupied by 1 H atom

Si(001) surface after atomic H adsorption at RT

Many singly occupied dimers H randomly distributed

20 nm × 20 nm, -2 V, 0.7 nA

Changes in geometric and electronic structures upon adsorption of hydrogen

Clean dimer: asymmetric, with π bond

Singly-occupied dimer:Doubly-occupied dimer:symmetric, π bond brokensymmetric, π bond broken

Unusual behavior of H_2 - Si(001) interaction

 Strong surface temperature dependence of H₂ sticking probability
 Near-first-order kinetics of recombinative desorption
 R_d ≡ -dθ/dt ≈ kθ (NOT kθ²) θ — H coverage
 H + H → H₂(g) ↑

Relevant surface configurations and interactions

"Prepairing" mechanism can explain 1st-order kinetics naturally Interaction strength closely related to intradimer or interdimer

- Direct counting of different surface configurations using STM
- Application of statistical mechanics to infer interaction energies

Desorption pathways in controversy

Experimental

• Apparatus:

UHV STM, base vacuum pressure < 7×10⁻¹¹ torr
 Tungsten tips made by electrochemical etching
 n-type silicon (10 Ω/cm), surface oriented to within 0.5°

• Procedure:

— Dose surface with atomic H ($0.04 \le \theta \le 0.65$)

— Anneal surface to reach equilibrium distribution

— STM at RT

Experimental set-up

UHV with capabilities of STM, TPD, AES, optical techniques and molecular beam techniques

UHV STM, base vacuum pressure < 7×10⁻¹¹ torr

H distribution after annealing to 640 K

Si(001) surface after atomic H adsorption at RT

Many singly occupied dimers H randomly distributed

20 nm × 20 nm, -2 V, 0.7 nA

Counting results of H configurations

- Most H in doubly occupied dimers
- Cluster size distribution is not statistical
 - → Intradimer and interdimer interactions do exist

Qualitative analysis

• strong pairing

• weak clustering

Pairing and clustering interactions

- A nearest-neighbor-interaction model Analytical fitting to θ , θ_2 , θ_{22} (quasi-1D Ising Model)
- **Correlation function calculation**
- ➡ Monte Carlo simulation of cluster size distribution

Monte Carlo simulation

Monte Carlo Method:

- Random tentative hops
- Hopping probability
 - $\mathbf{p} = \mathbf{e}^{-\Delta \mathbf{E} / \mathbf{kT}} \quad (\Delta \mathbf{E} \ge \mathbf{0})$
 - $\mathbf{p}=\mathbf{1} \qquad (\Delta \mathbf{E} \leq \mathbf{0})$

Important issues in programming :

- Possible configurations (branches)
- Boundary effects
- Testing convergence (equilibrium)
 - ~ 10⁶ tentative hops per site

Comparison of MC simulation results and experimental data

Summary Intradimer and interdimer interactions of H on Si(001)

Experiment and analysis

- Direct counting of H configurations in STM images to obtain θ , θ_2 , θ_{22}
- Most H in doubly occupied dimers. Some Clusters
- Analytical fitting. Correlation function. Monte Carlo simulation

Results and implications:

- Obtained energies in a way independent of any pathway assumptions pairing ($\epsilon = 0.28 \pm 0.03 \text{ eV}$) >> clustering ($\omega = 0.04 \pm 0.01 \text{ eV}$)
- Driving force: π bonds
- A simple "interdimer prepairing" mechanism cannot explain the kinetics

Relevant surface configurations and interactions

Driving force for pairing and clustering: recovery of π bond

Desorption/adsorption pathways in controversy

Previously only theoretical calculations, no direct experimental evidence

Strong dependence of surface temperature

U. Hofer et al. Phys. Rev. B 54, 5978 (1996)

Experimental

• Procedure:

Dosing of H₂ at the T_s ~500K Take STM images at RT AES, TPD to confirm adsorbed species

• Special issues:

- \rightarrow Impurities: clean surface (defect density <0.6%) before dosing
- \rightarrow High-purity H₂ via a LN₂ cooling trap to reduce H₂O
- \rightarrow All filaments turned off during and after dosing
- \rightarrow T_s < 500K to avoid H diffusion

STM image of H_2 adsorption on clean Si(001) at 450K

After exposure of 10⁶ Langmuir H₂ at 450K

Adsorbates in quartet configuration

Filled-state image surface bias ~ -2V current ~ 0.5nA

TPD confirmation of adsorbed species

filled-state images taken at ~ 0.5 nA, -2V sample bias

clean Si(001) before ads. defect/contamination

~ 0.6%

ads. to ~1ML under same dosing condition

after TPD to 780K defect/contamination ~ 0.8%

Enhanced H₂ adsorption at specific sites on H/Si(001)

 $S_{enh} \sim 8 \times 10^{-4} >> S_{1st}$

STM images showing H_2 adsorption on D_B step sites

Enhanced sticking coefficient on D_B step sites over flat terrace:

 $S_0 \sim 4 \times 10^{-4}$

Adsorption pathway

Considerations about nozzle temperature

M.Duerr et. al., J. Chem. Phys. 111, 10411 (1999)

*Initial sticking configuration of H*₂ *on clean Si(001)*

Outrunning diffusion

At 1500 K, desorption rate and diffusion rate comparable, ~ 10⁷ s⁻¹

— need T flash to 1500 K for several ns — LITD to see initial desorption sites

Surface before and after pulse

before

after

intra inter

Direct counting and quantitative evaluation results

- inter-dimer vacancy pairs more than intra-dimer pairs
- inter-dimer vacancy pairs 8 times higher than statistical value

 \rightarrow inter-dimer desorption pathway exsists

Conclusions

Dynamics of interaction between H₂ and Si(001) surface

- Enhanced sticking probabilities up to 10 orders of magnitude higher on specific sites (STM, TPD, SHG)
- Interdimer pathway of H₂ adsorption preferred over intradimer pathway (STM, MB)
- Evidence for interdimer desorption pathway observed (STM, LITD)

 \rightarrow Studies of adsorption indicate strong coupling with surface phonons in the interdimer pathway, better explains the strong dependence on T_{surface}

A promising technique for nano-fabrication

Si(100)2 x 1 : H surface with STM depassivated pattern of letters "M" and "D"

Acknowledgements

Hui Zhou

Albert Biedermann

Daejin Eom

Ernst Knoesel

Kwang Rim

Michael Duerr

George Flynn

Tony Heinz

Thank you for your attention!