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The self-trapping phenomenon of Bose-Einstein condensates �BECs� in optical lattices is studied by numeri-
cally solving the Gross-Pitaevskii equation. Our numerical results reproduce the self-trapping that was ob-
served in a recent experiment �Anker et al., Phys. Rev. Lett. 94, 020403 �2005��. However, we do not find that
the appearance of the steep edges on the boundaries of the wave packet is the critical signal of the self-
trapping. More importantly, we discover that the self-trapping breaks down at long evolution times; that is, the
self-trapping in optical lattices is only temporary and has a lifetime. This temporariness is caused by the
tunneling of atoms at the edge of the BEC wave packet towards outside wells. Our analysis shows that the
phenomena observed numerically can all be understood by regarding the optical lattice as a train of double-
well potentials.
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I. INTRODUCTION

Progress in recent years has shown that a Bose-Einstein
condensate �BEC� in an optical lattice is a fascinating peri-
odic system, where the physics can be as rich as in fermion
periodic systems, the main subject of condensed-matter
physics. In such a bosonic system, people have observed
well-known and long predicted phenomena, such as Bloch
oscillations �1� and the quantum phase transition between
superfluid and Mott insulator �2�. More importantly, there are
new phenomena that have been either observed or predicted
in this system, for example, nonlinear Landau-Zener tunnel-
ing between Bloch bands �3,4� and the strongly inhibited
transport of one-dimensional BEC in an optical lattice �5�.

Another intriguing phenomenon, self-trapping, was re-
cently observed experimentally in this system �6�. In this
experiment, a BEC with repulsive interaction was first pre-
pared in a dipole trap. By adiabatically ramping up an optical
lattice, the BEC was essentially transformed into a Bloch
state at the center of the Brillouin zone. With the optical
lattice always on, the BEC was then released into a trap that
serves as a one-dimensional waveguide. The evolution of the
BEC cloud inside the combined potential was studied by
taking absorption images. When the number of atoms in the
BEC is small, say around 2000, the BEC wave packet was
found to expand continuously �which is expected�. However,
when the number of atoms was increased to about 5000, it
was observed that the BEC cloud stops to expand after ini-
tially expanding for about 35 ms �see Fig. 1�. This is quite
counterintuitive. Even without interaction, a wave packet
with a narrow distribution in the Brillouin zone expands con-
tinuously inside a periodic potential. When there is an inter-
action between atoms and it is repulsive, one would certainly
expect the wave packet to expand. Moreover, one would ex-
pect that the BEC cloud expands faster when the BEC cloud
is denser as the result of stronger repulsive force. The experi-
ment showed the contrary: if the cloud is dense enough, it
self-traps and stops spreading.

There are now two explanations of this counterintuitive
self-trapping phenomenon. The authors of Ref. �6� offered an
explanation themselves. They suggested that the self-
trapping in the optical lattice is closely related to the self-
trapping in a double-well potential �7–10�. The other expla-
nation is proposed in Ref. �11�, where a new localized
nonlinear wave, gap wave, is found and used to explain the
self-trapping. Consequently, there arises a controversy re-
garding which explanation is right.

To understand this intriguing phenomenon and also as an
attempt to resolve the controversy mentioned above, we have
carried out an extensive numerical study of this system with
the one-dimensional �1D� Gross-Pitaevskii equation. Our re-
sults match quite well with the experimental data as shown
in Fig. 1. When the atom number N in the BEC is 2000, the
agreement between our numerical results and the experiment
is excellent; when N=5000, our results are about 40% larger
than the experimental data. This discrepancy is likely caused
by the higher density: with higher density the lateral motion
of the BEC cloud may become more relevant to the longitu-
dinal expansion; however, the lateral motion is completely
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FIG. 1. The width of the BEC wave packet as a function of time
for N=2000 and N=5000. N is the number of atoms in the BEC.
The solid lines are our numerical results while the circles and
squares are experimental data from Ref. �6�.
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ignored in our numerical study as we use the 1D Gross-
Pitaevskii equation.

We have analyzed our numerical results in details. Our
analysis shows that the expanding dynamics of a BEC cloud
in an optical lattice, including the appearance of steep edges
and the self-trapping, can be well understood by regarding
the optical lattice as a train of double-well potentials. In
other words, our study is in support of the explanation in
Ref. �6�.

However, this support is only partial as our study differs
from Ref. �6� on two major features of the BEC cloud ex-
pansion. First, we find that the appearance of the steep edges
does not always lead to self-trapping as widely believed
�6,11�. Second, we discover that the self-trapping is only
temporary. After a sufficiently long evolution time, the self-
trapping breaks down and the wave packet starts to expand
again as seen in Fig. 2. Since the breakdown time is much
longer than the observation used in the current experiment
�6�, these results need to be verified in future experiments.
Our numerical analysis shows that the breakdown of self-
trapping is caused by the small tunneling of atoms near the
edges of the BEC cloud towards outside wells.

If the explanation of the self-trapping as a gap wave in
Ref. �11� were true, it would imply that the self-trapping is
not temporary, which contradicts with our numerical results.
This may indicate that the new gap state has nothing to do
with the self-trapping observed in the experiment. More
study is certainly needed to clarify the issue.

This paper is organized as follows. In Sec. II, we describe
our numerical method and the basic features of the wave
packet evolution that we have observed in our numerical
simulation. In Sec. III, we offer a detailed analysis of our
numerical results in an attempt to understand the appearance
of steep edges and self-trapping. In Sec. IV, the lifetime of
the self-trapping is discussed. The paper ends with a conclu-
sion section.

II. WAVE PACKET EVOLUTION

To model the experiment, we use the following Gross-
Pitaevskii �GP� equation

i�
�

�t
��r,t� = −

�2

2m
�2��r,t� + V0 cos�2kLx���r,t�

+ Vwg�r���r,t� +
4��2as

m
���r,t��2��r,t� , �1�

where m is the atomic mass, as is the s-wave scattering
length, kL is the wavelength of the laser that generates the
optical lattice, and Vwg�r� describes the waveguide potential.
Due to the tight confinement perpendicular to the optical
lattice from the waveguide potential, the dynamics of this
system is largely one dimensional. This allows us to integrate
out the two perpendicular directions and reduce the above
GP equation to

i
���x,t�

�t
= −

1

2
�2��x,t� + V cos�x���x,t� +

1

2
�x2��x,t�

+ g���x,t��2��x,t� , �2�

where we have made the equation dimensionless. In doing
so, we have x in units of 1 /2kL and t in m /4�kL

2. The strength
of the optical lattice is given V=V0 /16Er with Er=�2kL

2 /2m
being the recoil energy. For the nonlinear interaction, we
have

g =
�asm��N

�2��kL
, �3�

where N is the total number of the BEC in the harmonic trap
and �� is the transverse trapping frequency of the wave-
guide. The other frequency � is so chosen that the initial rms
width of BEC wave packet is 7.6 �m as in the experiment
�6�. This width corresponds to about 100 wells occupied. The
wave function � is normalized to one. In our numerical
simulation, we use the following values from the experiment
�6�, �=2� /kL=783 nm, V0=10Er, and ��=2��230 Hz.

To simulate the experiment, we prepare our initial wave
function � to be the ground state in the combined potential of
V cos�x�+ 1

2�x2. This is achieved by integrating Eq. �2� with
imaginary time. In the experiment, the waveguide potential
also has a longitudinal trapping frequency at �� =2� Hz,
which is very weak and can be ignored. Therefore, after ob-
taining the initial wave function, we completely remove the
longitudinal trapping and let the wave function evolve ac-
cording to the following equation:

i
��

�t
= −

1

2
�2� + V cos�x�� + g���2� . �4�

The evolutions are subsequently recorded and analyzed.
We have computed the evolution of the wave packets for

different numbers of atoms in the BEC. As indicated in Eq.
�3�, the number of atoms in the BEC translates into the non-
linear parameter: the larger the atom number N, the stronger
the nonlinearity �or the repulsive interaction between atoms�.
Figure 2 illustrates how the width of a wave packet evolves
for different atom numbers.

It is clear from this figure that, when the BEC is dilute
and has small atom numbers, N	2000, the wave packet ex-
pands continuously without stopping as one may have ex-
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FIG. 2. The width of the BEC wave packet as a function of time
for N=2000 �dashed line�, 3000 �dotted line�, 5000 �solid line�, and
50 000 �dashed-dotted line�.
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pected. Also as expected, in this range, when the number of
atoms increases, the expansion becomes faster. The evolution
becomes very different when the BEC is denser. As shown in
Fig. 2, for N=3000, the wave packet expansion slows down
around 70 ms and becomes slower than that for N=2000
around 85 ms. This means that the expansion is slower for a
denser cloud of repulsive interaction, which is counterintui-
tive. As the cloud gets denser with more atoms, the expan-
sion slows down further. Around N=5000, there even ap-
pears a plateau where the cloud stops expanding and
becomes self-trapped as observed in the experiment �6�. Fig-
ure 2 illustrates a key point: the intriguing self-trapping phe-
nomenon is a gradual process. Before it happens, the wave
packet expansion already slows down for high enough den-
sities.

What is more interesting is that, in our numerical simula-
tion, the wave packet continues to expand after pausing for
30–40 ms. For N=5000, the expansion restarts at �85 ms,
just beyond the longest observation time in Ref. �6�. There-
fore, this continued expansion awaits for verification in fu-
ture experiments. Nevertheless, the counterintuitive phenom-
enon, denser clouds expand slower, persists even after the
expansion restarts as we can see in Fig. 2. For contrast, we
also computed the case of very large atom number
N=50 000. The wave packet is almost never spread after it
expands in a very short initial time. This can be understood
as that the self-trapping lasts too long to be observed in our
numerical simulations.

To get a clearer picture of the evolution processes, snap-
shots of the wave packet evolution for N=2000 and N
=5000 are presented in Figs. 3 and 4, respectively. In Fig. 3,
the wave packet expands with a smooth profile before 80 ms
�about the longest experimental observation time in Ref. �6��.

However, around 85 ms, the steep edges on both sides of the
wave packet begin to appear and grow more and more pro-
nounced as the evolution goes on. The wave packet contin-
ued to expand and the steep edges keep moving out during
the time evolution. No self-trapping occurs for N=2000.

For the wave packet of N=5000, as shown in Fig. 4, after
initial expanding with a smooth profile from t=0 to about
30 ms, steep edges are growing pronounced on both sides of
the wave packet. In the subsequent evolution, the wave
packet stops expanding out and the positions of the steep
edges do not move out any further from t=30 to 80 ms.
When compared with the width in Fig. 1, it is clear that this
appearance of the steep edges coincides with the nonspread-
ing of the wave packet. Therefore, it is quite natural to be-
lieve that the steep edges in Fig. 4 is the signal of the emer-
gence of the self-trapping. However, the case of N=2000 that
we considered above indicates otherwise: the steep edges do
not always lead to the self-trapping of the wave packet.

We shall next analyze in detail our numerical results, in an
attempt to understand these two intriguing phenomena, steep
edge and self-trapping.

III. STEEP EDGE AND SELF-TRAPPING

As our discussion goes on, it will become very clear that
one can regard the optical lattice as a train of double-well
potentials and much of the dynamics of a BEC in the optical
lattice can be understood in terms of the dynamics of a BEC
in the double-well potential. Therefore, we pause here to
give a brief recount of the basic features of the double-well
system.
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FIG. 3. Time evolution of the wave packet density for
N=2000.
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FIG. 4. Time evolution of the wave packet density for
N=5000.
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A. Double-well model

For a BEC in a double-well potential, its Hamiltonian can
be written as �7,8,10�

Hclassical = −
c

2
s2 + v�1 − s2 cos 
 , �5�

where c is the nonlinear parameter describing the interaction
between atoms, and v is the coupling constant between the
condensates in the two wells. 
=
b−
a is the relative phase
between the two wells a and b while s is the fractional popu-
lation difference s= �Nb−Na� / �Na+Nb� with Na and Nb being
the number of atoms in wells a and b, respectively. The
dynamical equation derived from this Hamiltonian can be
expressed as

ṡ = v�1 − s2 sin 
 , �6�


̇ = − cs −
vs cos 


�1 − s2
, �7�

where ṡ is the atom current between these two wells.
It has been known for a while that the self-trapping occurs

in this double-well system �7,8,10� and it was observed ex-
perimentally �9�.

Previous studies �7,8,10� show that there are two types of
self-trapping in the double-well system, depending on the
ratio �=c /v and the population difference s in Eq. �5�. They
are �1� if 1���2 and the relative phase 
 is around �, then
the self-trapping occurs when s
0.5. This is called “oscilla-
tion type” self-trapping. �2� If �
2 and s
0.5, another type
of self-trapping emerges with the relative phase 
 between
the two wells increasing with time. Therefore, it is called
“running phase type” self-trapping.

B. Steep edges

In Sec. II, we have shown how the density profile of the
BEC cloud evolves in time. It is clear from Eqs. �6� and �7�
that to fully understand the dynamics we also need to know
how the relative phase changes in time. In Figs. 5 and 6, we
have plotted how the relative phase between each pair of
neighboring wells evolves in time for two typical cases N
=2000 and N=5000. In our calculation, the relative phase 

is defined as the phase difference between the middle points
of the two neighboring wells.

We first focus on Fig. 5 for the case of N=2000. Initially,
the relative phase is zero for every pair of double wells in the
optical lattice as indicated by a horizontal line. As the evo-
lution goes on, the atoms flow from the wells with high
density to outside wells with low density, and the line of
relative phase begins to incline with an increasing slope. This
increasing slope is an indication that the atoms are moving
faster as more interaction energy is converted into the kinetic
energy during the wave packet expansion.

Note that the negative value of the relative phase in the
figure indicates that the atoms flow to the left while the posi-
tive value is the result of the atoms flowing to the right.

The inclination tendency of the line in Fig. 5 stops when
the two endpoints of the line reach ±� /2, respectively. This

is around t=80 ms, right when the steep edges appear. This
seems to suggest that the relative phase 
 reaching the value
of ±� /2 at the edges of the BEC cloud is related to the
appearance of steep edges. This is indeed the case as we
notice from Eq. �6� that the atom current is the largest when

= ±� /2. More specifically, consider three neighboring
wells, a, b, and c. If the relative phase 
ab between wells a
and b is � /2 and 
bc�� /2, then there will be more atoms
flowing into well b than flowing out, leading to the appear-
ance of the steep edges.

As shown in Fig. 6, the situation is similar for N=5000.
We also observe that the appearance of steep edges is asso-
ciated with that the relative phases reach ±� /2 near the
edges of the wave packets.

We have also computed how the wave packet evolves in
the quasimomentum space. To achieve this, we expand the
wave packet in terms of the Bloch waves belonging to the
lowest Bloch band of the linear system with the periodic
potential cos x. The results are shown in Fig. 7, where there
is not a large population around k=1/4. Therefore, we do not
see the link between the formation of steep edges and the
population at k=1/4 as suggested in Ref. �6�.
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FIG. 5. The evolution of relative phases for each pair of neigh-
boring wells in the optical lattice. N=2000.
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C. Self-trapping in optical lattices

As mentioned in Sec. III A, the self-trapping of a BEC
occurs in a double-well potential only under certain condi-
tions. Our following numerical analysis shows that on the
one hand, whenever the self-trapping happens in an optical
lattice, a few double wells near the edges of the wave packet
always satisfy the self-trapping conditions; on the other
hand, if no pairs of double well satisfy the self-trapping con-
ditions, then there is no self-trapping in the optical lattice. As
a result, we establish a solid link between the self-trapping in
the double-well system and the self-trapping in the optical
lattice, which was suggested in Ref. �6�.

Since the self-trapping condition in the double-well sys-
tem is given by the ratio �=c /v and the population differ-
ence s, we have computed � and s for each pair of the neigh-
boring wells in the optical lattice for a given wave packet.
The details of how � is computed for neighboring wells in an
optical lattice can be found in the Appendix.

Figure 8 shows one set of such calculations for a wave
packet with N=5000 at t=40 ms, which is the time when the
self-trapping happens. It is clear from Fig. 8�a� that there are
four pairs of double wells whose � and s satisfy the condition
for the “running phase type” self-trapping in the double-well
system. Furthermore, two of these four pairs, marked by A

and B in Fig. 8, are located right at the two edges of the wave
packet. The other two are just nearby; for clarity we do not
mark them. This suggests that the self-trapping pairs of
neighboring wells around the edges serve as two dams on the
both sides of the wave packet, stopping the flow of atoms to
the outside. In addition, we have checked the neighboring
wells inside the steep edges and find that they do not satisfy
the double-well self-trapping condition. For these pairs of
double wells, the population difference s is smaller than 0.5
although �’s are larger than 2.

To further confirm this link, we need to check if there
exist the neighboring wells that satisfy the double-well self-
trapping conditions for the case of N=2000. Figure 9 shows
that the values s and � for the wave packet with N=2000 at
t=110 ms. This is the time when the steep edges have al-
ready developed. We see from the figure that all the values of
� are smaller than one: the self-trapping conditions of the
double-well system are not satisfied by any pair of neighbor-
ing wells in the optical lattices.

The above analysis shows that the self-trapping in optical
lattices happens only when there exist neighboring wells that
satisfy the self-trapping condition of the double-well system.
When no pair of the neighboring wells in the lattice satisfies
the double-well self-trapping condition, there is no self-
trapping in the optical lattice. So established is a solid link
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FIG. 6. The evolution of relative phases for each pair of neigh-
boring wells in the optical lattice. N=5000.

0.00

0.05

0.10

0.15

0.00

0.01

0.02

0.00

0.02

0.04

-0.4 -0.2 0.0 0.2 0.4
0.00

0.03

0.06

0.09

P
op

ul
at

io
n

P
op

ul
at

io
n

t=0ms

P
op

ul
at

io
n

P
op

ul
at

io
n

t=20ms

t=30ms t=40ms

t=50ms t=60ms

K
-0.4 -0.2 0.0 0.2 0.4

-0.4 -0.2 0.0 0.2 0.4 -0.4 -0.2 0.0 0.2 0.4

-0.4 -0.2 0.0 0.2 0.4 -0.4 -0.2 0.0 0.2 0.4

-0.4 -0.2 0.0 0.2 0.4 -0.4 -0.2 0.0 0.2 0.4

K

t=70ms t=80ms

FIG. 7. Time evolution of the wave packet in the quasimomen-
tum space for N=5000 with the optical lattice potential V=10 and
the rms width of the wave packet 7.6 �m.

SELF-TRAPPING OF BOSE-EINSTEIN CONDENSATES IN… PHYSICAL REVIEW A 74, 063610 �2006�

063610-5



between these two self-trapping phenomena. One intuitive
way of understanding this link is such: Once the self-
trapping happens in some pairs of neighboring wells around
the edges of a wave packet, these self-trapped double-wells,
behaving like “dams,” stop the tunneling of atoms towards
outside, causing the nonspreading of the wave packet. In Fig.

10 we have plotted a series of “phase diagrams,” where the
distribution of the s-� pairs is shown. The rectangular region
in each panel is the area where the self-trapping conditions
are satisfied. We can see clearly from this figure that the
double-well self-trapping happens from about t
=30 ms to 80 ms for N=5000, coinciding with the self-
trapping in the optical lattice. We have also checked the
cases of N=7000 and N=50 000 and reached the same con-
clusion.

Based on the link between these two self-trappings, it is
also possible to understand why the BEC cloud expands
slower around N=3000 than N=2000 shown in Fig. 2. As
one can imagine, when the cloud density increases, some
pairs of the wells will get close to satisfy these self-trapping
conditions and eventually satisfy them. For the medium den-
sities, e.g., N=3000, there should be a few pairs of the wells
that satisfy the conditions just barely. As a result, the self-
trapping conditions can be easily or quickly destroyed by the
“dripping” effect mentioned above. However, as the cloud
expands, the self-trapping conditions can again be satisfied
by some pairs of wells further inside and then destroyed
again. This on-and-off process can dramatically lead to slow-
ing down of the cloud expansion. What is a pity is that this
straightforward picture is hard to be corroborated by our nu-
merical computation because the values s and � for neigh-
boring wells can only be computed approximately. Alterna-
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tive methods may be needed to verify this picture.
So far, we have studied only the wave packets whose

initial width is 7.6 �m as in the experiment. In general, the
self-trapping depends on the initial widths of the wave pack-
ets. We have investigated how the initial width influences
self-trapping. Shown in Fig. 11 is a phase diagram of self-
trapping with respect to the total atom number and the initial
width of the wave packet. The figure shows that for a given
atom number the initial width must be small enough for the
self-trapping to happen. This is understandable since the key
in self-trapping is that the interatomic interaction must be
strong enough. A wider initial wave packet for a given atom
number means weaker interaction.

IV. LIFETIME OF THE SELF-TRAPPING

According to Fig. 2, the width of the wave packet for N
=5000 continues to increase after staying at a certain value
from t=30 to 80 ms. This means that the self-trapping does
not stay forever. This breakdown of self-trapping is likely
caused by the leakage of atoms at the outmost wells, which
we call the dripping effect. At the outmost wells, the density
of the BEC is very low and the self-trapping conditions of
the double-well system can never be satisfied. As a result, the
atoms can tunnel towards outside. The amount of atoms tun-
neling out is very small and has not much effect on the
evolution of the whole cloud for a short time. However, for a
long evolution time, this small amount of “dripping” can
lead to the significant decreasing of atom numbers in the
self-trapping wells and thus destroy the self-trapping. This is
similar in spirit to that small cracks can cause the collapse of
a dam in a long time. The lifetimes of the self-trapping are
calculated and shown in Fig. 12. This figure shows that the
larger number of the particles, the longer the lifetime for the
self-trapping.

As shown in Fig. 2, the turn from the self-trapping to
reexpansion is not very sharp, leading to some ambiguity
how to calculate the lifetime. We notice that the width of the
wave packet has a small bump at the beginning of the self-
trapping, followed by a shallow dip. We take the tip of the
small bump as the beginning of the self-trapping. The ending
point is taken as the point where the wave packet regains its

tip value of the small bump at the tail of the dip.
To learn some detailed knowledge of these “dripping” at-

oms, we have monitored in Fig. 13 the growth of the atom
number in the 110th and 200th wells. At the beginning, there
are no atoms in both wells. Then around t1=83.9 ms, there is
a sudden increase of atom number in the 110th well as the
result of the atoms “dripping” out of the inside wells. At a
later time t2=189.7 ms, we also see a sudden jump of atom
number in the 200th well. This tells us that it takes about
1.18 ms for the atom to “drip” from one well to a neighbor-
ing well. We estimate that the lowest energy gap in the
double-well potential is about 0.077Er. Therefore, the tunnel-
ing time between the two wells is about 1.8 ms, which agrees
very well with 1.18 ms considering how rough our estima-
tion is. This indicates that the “dripping” atoms go from one
well to another well by tunneling through the energy barrier.

There is a recent work, which explains the self-trapping in
the optical lattice in terms of truncated Bloch waves �11�. It
is not very clear how this explanation is related to our expla-
nation in terms of the double-well self-trapping. It seems that
if the explanation with truncated Bloch waves is right, then
the self-trapping should be permanent. It is in contradiction
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with our numerical finding that the self-trapping is tempo-
rary. More study is certainly needed to clarify the issue.

V. CONCLUSION

With the Gross-Pitaevskii equation, we have studied nu-
merically the wave packet dynamic of a BEC in a one-
dimensional optical lattice. We have reproduced the self-
trapping observed in a recent experiment �6�. More
importantly, we have discovered two major features in the
wave packet expansion dynamics. First, we find that the ap-
pearance of the steep edges does not always lead to self-
trapping. Second, the self-trapping is found to have a life-
time; that is, the cloud expansion stops only temporarily. We
have analyzed in detail the numerical results and found that
the wave expansion dynamics of a BEC in an optical lattice
can be well understood by regarding the optical lattice as a
train of double-well potentials.
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APPENDIX: COMPUTATION OF � IN OPTICAL
LATTICES

We choose one well and its neighbor as a double-well
trap. The GP equation is as Eq. �4� except the potential is
replaced by V�x�=V cos�x� for �x � �2� and V�x�=V for
�x�
2�. Then we write the wave function as a two-mode
wave function, �=au1�x�+bu2�x� and let �a�2=Na / �Na+Nb�
and �b�2=Nb / �Na+Nb� �Na is the particle number in well a
and Nb the particle number in well b�. Plugging the double
mode wave function into the GP equation with potential V�x�
and using the tight-binding approximation, we obtain the ef-
fective Hamiltonian

Heff = − c/2��a�2 − �b�2�2 + v�a*b + ab*� , �A1�

where the parameter c= �Na+Nb�Ng	 �u1�x��4dx and
v=N	�− 1

2 �u1
*�x��u2�x�+V��x�u1

*�x�u2�x��dx. The wave
function u1�x� �or u2�x�� is obtained as a ground state from

Eq. �4� with single well Ṽ�x�=V cos�x� for 0�x�2� and

Ṽ�x�=V for other x values.
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