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Ehrenfest breakdown of the mean-field dynamics of Bose gases
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The unstable mean-field dynamics of a Bose gas is shown to break down at time τh = (c1/γ ) ln N , where γ is the
Lyapunov exponent of the mean-field theory, N is the number of bosons, and c1 is a system-dependent constant.
The breakdown time τh is essentially the Ehrenfest time that characterizes the breakdown of the correspondence
between classical and quantum dynamics. This breakdown can be well described by a quantum fidelity defined
for one-particle reduced density matrices. Our results are obtained with the formalism in particle-number phase
space and are illustrated with a triple-well model. The logarithmic quantum-classical correspondence time may
be verified experimentally with Bose-Einstein condensates.
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I. INTRODUCTION

The nonlinear Gross-Pitaevskii equation (GPE), as a mean-
field theory, has been the dominant tool in describing the
dynamics of Bose-Einstein condensates (BECs) in ultracold
atomic gases [1,2]. However, we face a quandary when
the mean-field dynamics of a BEC becomes dynamically
unstable or chaotic [3–9]: On the one hand, one may regard
this instability as an unphysical artifact resulting from the
mean-field approximation, since the exact dynamics of a BEC
is governed by the many-body Schrödinger equation, which is
linear and thus does not allow chaos; on the other hand, the
dynamical instability was observed in experiments [10–15]
and it has been proved with mathematical rigor that the GPE
describes correctly not only the ground state but also the
dynamics of a BEC in the large-N limit (N is the number
of bosons) [16,17].

Our aim in this work is to resolve this fundamental dilemma.
Our study shows that the mean-field theory (the GPE) is only
valid up to time

τh = c1

γ
ln N + o(ln N ), (1)

where γ > 0 is the Lyapunov exponent of the mean-field
dynamics and c1 is a constant that depends only on systems.
With this time scale, the dilemma is resolved: On the one
hand, in the large-N limit (N → ∞), τh goes to infinity and
thus the GPE is always valid just as proved rigorously in
Ref. [17]; on the other hand, the time τh increases with N

only logarithmically and it is not a long time for a typical BEC
experiment. For example, for the system studied in Ref. [3],
the Lyapunov time τγ = 1/γ ∼ 1 ms. As the number of atoms
in a BEC prepared in a typical experiment is around 104, we
have τh ∼ 10 ms. As a result, the dynamical instability or the
breakdown of the mean-field dynamics can be easily observed
in a typical experiment as reported in Ref. [12].

This time scale τh is essentially the Ehrenfest time, which
is the time that the correspondence between classical and
quantum dynamics breaks down [18,19]. The usual Ehrenfest
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time τEh = (c1/γ ) ln(A/�), where γ is the Lyapunov exponent
of the classical motion and A is a typical action [19]. The
similarity is due to the fact that the GPE can be regarded
as a classical equation in the large-N limit [20]. Therefore,
our result paves the way to experimental investigation of a
fundamental relation in the quantum-classical correspondence,
the logarithmic behavior of the Ehrenfest time, as N can be
varied in experiments.

We cast the quantum dynamics onto the particle-number
phase space (PNPS), which is a rearrangement of Fock states.
In this phase space, for a nearly coherent state and in the
large-N limit, the quantum many-body dynamics is equivalent
to an ensemble of mean-field dynamics. When the mean-field
motion is regular, mean-field trajectories will stay together
and the Bose gas remains coherent. If the mean-field motion is
unstable or chaotic, mean-field trajectories will soon separate
from each other exponentially, leading to decoherence of
the Bose gas and breakdown of the mean-field theory. Thus,
there are two distinct types of quantum dynamics, whose
difference can be characterized by the quantum fidelity for
one-particle reduced density matrices (RDMs).

We investigate the Ehrenfest breakdown numerically in the
system of a BEC in a triple-well potential [21–25], which may
be the simplest BEC model that embraces chaotic mean-field
dynamics. With this model, we verify numerically the Ehren-
fest time and show that our quantum fidelity can well capture
the characteristics of two different types of quantum dynamics.

The mean-field instability or breakdown has been discussed
in the literature [3,5–7,26–31]. However, a general and explicit
relation between mean-field chaos, the number of particles, and
breakdown time is still lacking. Further, in PNPS not only can
such a breakdown be understood intuitively and quantitatively,
but the significance of a local phase structure is also apparent,
the distortion of which leads to decoherence.

II. PARTICLE-NUMBER PHASE SPACE

In Ref. [20] it is shown that many quantum systems become
classical in the large-N limit. A dilute Bose gas belongs
to this class of quantum systems: Its dynamics becomes
classical and it is well described by the mean-field GPE in
the large-N limit. In this section we introduce PNPS, where
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this quantum-classical correspondence in the large-N limit
becomes transparent.

A. Definition

Any quantum state |�〉 of a system of N identical bosons
with M single-particle states can be regarded as a wave
function ϕ(x) over an (M − 1)-dimensional lattice space,
which we call particle-number phase space, via

ϕ(x) ≡ 〈0|
M∏
i=1

â
Nxi

i√
(Nxi)!

|�〉, (2)

where the xi are entries of the M-dimensional vector x,
Nxi ∈ {0, . . . ,N} for 1 � i � M , and

∑M
i=1 xi = 1. The â

†
i

and âi are the creation and annihilation operators for the ith
single-particle state, with [âi ,â

†
j ] = δij and n̂i ≡ â

†
i âi . The

continuous limit of PNPS is a hyperplane in [0,1]M (defined
by the constraint

∑M
i=1 xi = 1), where we can define (for i

from 1 to M)

〈xi〉 ≡
∫

dx xi |ϕ(x)|2, (3)

〈(�xi)
2〉 ≡

∫
dx (xi − 〈xi〉)2|ϕ(x)|2 (4)

to characterize the average position and spread of the distribu-
tion |ϕ(x)|2 over PNPS, given |�〉 normalized. Of course for
any finite N the integral should be interpreted as a summation
over all x in PNPS.

As an example of our particular interest, we examine an
SU(M) coherent state |�〉c in PNPS:

|�〉c ≡ 1√
N !

(
M∑
i=1

ψia
†
i

)N

|0〉, (5)

where
∑

i |ψi |2 = 1. In such a case we say that |ψ〉 (an M-
dimensional vector with ψi as its entries) is the mean-field
state of the SU(M) coherent state |�〉c. It is straightforward to
show for this coherent state |�〉c that

〈xi〉 = |ψi |2, 〈(�xi)
2〉 = |ψi |2(1 − |ψi |2)/N, (6)

which indicates that the coherent state |�〉c corresponds to
a localized distribution |ϕ(x)|2 in PNPS that peaks around
(|ψ1|2,|ψ2|2, . . . ,|ψM |2) with a vanishing spread at large N .

The wave function ϕ(x) in PNPS has a phase structure. For
any x and y in PNPS,

arg ϕ(x) − arg ϕ( y) = N

M∑
i=1

(xi − yi) arg ψi (mod 2π ),

(7)

which shows a wave vector k: ki = N arg ψi ∝ N . This phase
structure is important as it will give us an estimate of the time
τh in our later discussion. It is worth noting that when N → ∞,
there is no limit of the wave function ϕ(x) because its wave
vector k diverges.

Overall, we find that the coherent state corresponds to a
single-peaked wave packet with plane-wave phase structure
in PNPS. In the following, we discuss quantum dynamics in

PNPS and its relation to the mean-field dynamics. Note that
similar formalisms were also used in other contexts [32,33].

B. Dynamics

Consider the following Hamiltonian of a Bose gas

Ĥ =
M∑

i,j=1

{
H 0

ij â
†
i âj + Uij

N
â
†
i â

†
j âj âi

}
, (8)

where H 0
ij = H 0∗

ji , Uij = U ∗
ij and Uij = Uji . Corresponding

to the Schrödinger equation i∂t |�〉 = Ĥ |�〉, there is an
equation of motion (EOM) for ϕ(x; t) in PNPS [Eq. (A1)
in the Appendix]. We are especially interested in the dynamics
of a nearly coherent state ϕ(x; t), which is prescribed as the
following two conditions.

(i) The distribution |ϕ(x; t)|2 is localized such that 1/N �√
〈(�xi)2〉 � 1 for all i = 1,2, . . . ,M .
(ii) A local wave vector k(x; t) ≡ ∇x arg ϕ(x; t) exists in

PNPS and varies insignificantly over a scale of 1/N , i.e.,
|∂xi

kj | � N for all i,j = 1,2, . . . ,M .
With these two conditions and keeping only finite terms in

the large-N limit, an approximate [to O(1)] EOM for ϕ(x; t)
in PNPS can be derived [see Eq. (A2)]. Mathematically, there
are δ-function solutions to this EOM [Eq. (A2)]:

ϕ(x; t) = exp[iα(t)]
M∏
i=1

δ
(
xi − x0

i (t)
)

exp
[
ik0

i (t)xi

]
. (9)

In these δ-function solutions, x0
i (t) and k0

i (t) satisfy the
equation

i∂t ρ̂ = [ĤMF,ρ̂], (10)

where HMF,ij (t) ≡ H 0
ij + 2Uijρij (t) and

ρij (t) ≡
√

x0
i (t)x0

j (t)ei[k0
i (t)−k0

j (t)]/N . (11)

This is just the mean-field EOM for the one-particle RDM.
Conditions (i) and (ii) reflect our expectations of nearly

coherent states [see Eqs. (6) and (7)]. The existence of δ-
function solutions corresponds to the established result that
for any time t0, when N → ∞, coherent states at t = 0 stay
coherent when t = t0 [17].

The results above can be interpreted as follows: At large
N , for any initial state satisfying the two conditions, its time
evolution may be regarded as the superposition of mean-field
dynamics of δ functions, since any function in PNPS can be
decomposed into a superposition of a cloud of δ functions.
This is similar to the quantum dynamics of a single-particle
wave packet in real space: It can be regarded as a cloud
of classical particles and each of them follows Newton’s
EOM.

As the quantum-classical correspondence between a quan-
tum wave packet and a classical particle will break down at
the Ehrenfest time, the correspondence between one state in
PNPS and its mean-field description, one δ-function solution
[see Eq. (9)], will also fail when the mean-field trajectories
of the δ functions in the cloud diverge. The breakdown time
τh can be estimated using a conventional strategy in quantum
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chaos as in Ref. [19]. Essentially, before the breakdown the
wave packet of nearly coherent states in PNPS expands in
the form of exp γ t , where γ is the Lyapunov exponent of the
mean-field dynamics. According to Eq. (6), for t < τh,

�(t) ≡
√√√√ 1

M

M∑
i=1

〈(�xi)2〉(t) ∝ eγ t

√
N

. (12)

In addition, there is a consistent mean-field description only
if local wave vectors across the wave packet are almost equal,
that is,

κtN−λ�(t) � 1, (13)

where κN−λ is the average rate of growth of curvature ∂xi
kj

and the N dependence is written explicitly. Substituting (12)
into (13), we have

γ t + ln t + ln κ � (
λ + 1

2

)
ln N. (14)

The Ehrenfest time τh in Eq. (1) is obtained with c1 = λ + 1
2 ,

which is independent of N or γ . Numerical verification of this
relation will be presented later.

Note that it is well known that the quantum-classical
correspondence may last far beyond the Ehrenfest time (see,
e.g., Ref. [34]). Similarly, it is possible that the mean-field
theory remains valid even after our first estimate t = τh; this
interesting and special topic will be left for future study.

III. EXAMPLE OF THE TRIPLE-WELL MODEL

We now illustrate our results with an example. Consider a
BEC in a ring-shaped triple-well potential [25]. Under tight-
binding approximation, the second-quantized Hamiltonian is
[as a specific case of Eq. (8)]

Ĥ = −1

2

i =j∑
1�i,j�3

â
†
i âj + c

2N

3∑
i=1

â
†
i â

†
i âi âi , (15)

where c is the on-site interaction strength. For this system
M = 3. Its corresponding nonlinear mean-field EOM is

i
d

dt

⎛
⎝ψ1

ψ2

ψ3

⎞
⎠ =

⎛
⎝c|ψ1|2 −1/2 −1/2

−1/2 c|ψ2|2 −1/2
−1/2 −1/2 c|ψ3|2

⎞
⎠

⎛
⎝ψ1

ψ2

ψ3

⎞
⎠. (16)

Shown in Fig. 1 is a Poincaré section of the above mean-
field dynamics, where two kinds of motion are evident: The
central regular region is surrounded by a chaotic sea. The
conjugate variables used in plotting Fig. 1 are (J1,θ1) and
(J2,θ2), which are defined as J1 = |ψ1|2 − |ψ3|2, J2 = |ψ3|2,
θ1 = arg ψ2 − arg ψ1, and θ2 = 2 arg ψ2 − arg ψ1 − arg ψ3.

The quantum dynamics of this model can also be computed
rather easily. The evolution of |ϕ(x)|2 in PNPS is plotted in
Fig. 2, where two types of quantum dynamics are clearly
observed. In Figs. 2(a) and 2(b) an initial coherent state,
which is a Gaussian-like wave packet in PNPS, shows no
significant expansion or distortion during dynamical evolution.
In Figs. 2(c) and 2(d) the situation is drastically different: A
similar-looking initial coherent state expands and becomes
dramatically distorted after a certain time. The difference is

FIG. 1. Poincaré section of the classical (mean-field) triple-well
Hamiltonian with conjugate variables (J1,θ1) and (J2,θ2) at θ2 = 0,
θ̇2 < 0, c = 1.25, and E ≈ 0.708. The + represents a state in the
central regular region and the ∗ represents a state in the chaotic sea.

caused by the fact that the initial state in Fig. 2(a) corresponds
to a mean-field state in the regular region in Fig. 1 while the
one in Fig. 2(c) corresponds to a mean-field state in the chaotic
region.

It is obvious that the mean-field theory cannot describe the
dramatic quantum dynamics shown in Figs. 2(c) and 2(d). Such
a failure or breakdown of the mean-field theory due to rapid
decoherence has long been noticed in the literature [28–31]. In
Ref. [30] a remedy was tried unsuccessfully to bridge the gap
between the mean-field theory and the exact quantum theory. In

FIG. 2. Plot of |ϕ(x1,x2,x3; t)|2 for the quantum triple-
well model with N = 40. The two axes are x1 ∈ [0,1] and
x2 ∈ [0,1] (x3 = 1 − x1 − x2). Red regions are of larger |ϕ|2.
(a) Initial state corresponding to the mean-field state denoted by +
in Fig. 1, (b) the + state after evolving dynamically for t = 14.5, (c)
initial state corresponding to the ∗ state in Fig. 1, and (d) the ∗ state
at t = 14.5.
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this work we have shown that there exists a general time scale
τh in terms of the Lyapunov exponent and the number of bosons
beyond which the mean-field theory fails. In the following we
introduce a quantum fidelity to distinguish the two types of
quantum dynamics shown in Fig. 2 without using mean-field
formalism and confirm the time scale τh numerically.

A. Quantum fidelity

To quantify the loss of coherence in the quantum evolution
as shown in Fig. 2(d), we introduce the following quantum
fidelity Fq for the one-particle RDM ρ̂ and χ̂ :

Fq(ρ̂,χ̂ ) ≡ 1

N2
tr ρ̂†χ̂ . (17)

For a quantum state |�(t)〉, its one-particle RDM can be
explicitly written as∑

i,j

|i〉〈�(t)|â†
i âj |�(t)〉〈j |. (18)

There are three reasons to use this quantum fidelity.
(a) Experimentally, we are often interested in the one-

particle RDM.
(b) It allows us to define coherence C:

C(ρ̂) ≡ Fq(ρ̂,ρ̂), (19)

where ρ̂ is the one-particle RDM for |�〉. The coherence C
can quantify how coherent the state |�〉 is, as C(ρ̂) = 1 if and
only if |�〉 is a coherent state as in Eq. (5).

(c) It returns to the mean-field fidelity for coherent states,
i.e., Fq(ρ̂,χ̂ ) = FMF(ψ,φ) ≡ |〈φ|ψ〉|2 if ρ̂ and χ̂ are one-
particle RDMs for coherent states |�〉c and |�〉c, and ψ and
φ are mean-field states of |�〉c and |�〉c [see the discussion
under Eq. (5)]. Therefore, before the Ehrenfest breakdown Fq

essentially captures mean-field characteristics, especially the
Lyapunov exponent, which distinguishes regular and chaotic
mean-field trajectories.

B. Numerical results

The numerical simulation aims at verifying our theoretical
understanding as discussed: For a coherent initial state, at the
beginning the mean-field dynamics agrees with the quantum
evolution, producing even the same growth of discrepancy
between states; however, long-time exponential growth is not
allowed by quantum mechanics, so there exists an Ehrenfest
time τh beyond which the mean-field and quantum correspon-
dence fails. Such a failure is due to the decoherence of quantum
states; the breakdown time τh is given in Eq. (1).

We choose a coherent initial state |�(t = 0)〉c with the
one-particle RDM ρ̂(t = 0), whose corresponding mean-field
state is |ψ(t = 0)〉. Then we slightly perturb the mean-field
state into |ψ̃(t = 0)〉 and generate the corresponding coherent
state |�̃(t = 0)〉c and RDM ˆ̃ρ(t = 0). Next we observe the
evolution of quantum fidelity between these two states,
which allows us to calculate the Lyapunov exponent. Of
course, |ψ(t)〉 and |ψ̃(t)〉 evolve according to the mean-field

FIG. 3. (a) Quantum and mean-field fidelities.
Solid lines are 1 − FMF(ψ(t),ψ̃(t)), dashed lines are

1 − Fq (ρ̂(t), ˆ̃ρ(t))/
√
Fq (ρ̂(t),ρ̂(t))Fq ( ˆ̃ρ(t), ˆ̃ρ(t)) for N = 80,

and dotted lines are for N = 40. The Fq is normalized to better show
the correspondence. (b) Coherence C(ρ̂(t)). Curves show the decay
of coherence of quantum many-body states in (a). In the simulation,
c = 1.25, E ≈ 0.708, θ1 = π , θ2 = 0, and ‖ψ − ψ̃‖t=0 ≈ 10−4. The
lower set of lines in (a) and the corresponding upper set of lines in
(b) are for the integrable case J1 = 0; the upper set in (a) and the
corresponding lower set in (b) are for the chaotic case J1 = 0.5.

equations (16), |�(t)〉 and |�̃(t)〉 evolve according to the
quantum Hamiltonian in Eq. (8), and ρ̂(t) and ˆ̃ρ(t) are obtained
from |�(t)〉 and |�̃(t)〉, respectively. The 1 − Fq(ρ̂(t), ˆ̃ρ(t))
and 1 − FMF(ψ(t),ψ̃(t)) are shown in Fig. 3(a), where we see
that the mean-field fidelity FMF coincides with Fq for small t ,
as expected.

However, we also observe in Fig. 3(a) that there is an
Ehrenfest time τh when Fq and FMF start to visibly disagree.
Cases for different N and γ are plotted in Fig. 3(a), where we
can see that as N increases or γ decreases, τh gets longer. This
qualitatively agrees with the scaling of the Ehrenfest time. In
Fig. 3(b) it is observed that although τh is different for different
N and γ , τh is approximately the time when the coherence
C(ρ̂(t)) drops below 98%. This confirms our understanding
that the failure of correspondence between the mean-field and
quantum descriptions is the result of decoherence of quantum
states.
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FIG. 4. (a) Time evolution of coherence C(ρ̂(t)) for the integrable
J1 = 0 and the chaotic J1 = 0.6 trajectories. Here c = 1.25, E ≈
0.708, θ1 = π , θ2 = 0, and the time step in the simulation is 10−3.
The C of integrable J1 = 0 (the solid line in the top) remains high
while the C of chaotic J1 = 0.6 (other solid lines) drops quickly (N =
20,30, . . . ,80 from left to right). The dashed line is C = 98%. (b)
Linear fitting of ln �(t)/�(0) + ln t + ln κ = c1 ln N for the chaotic
initial state in (a) with c = 1, 1.25, and 2 and N from 20 to 80. Data
points are calculated when C drops to 98%. The slope c1 ≈ 0.6 is
found to be independent of c or γ .

Based on such an understanding, we can quantitatively
define the Ehrenfest time in this example as the time when
the coherence C(ρ̂(t)) drops below 98%. Examples of decay
of C(ρ̂(t)) are illustrated in Fig. 4(a), where the Ehrenfest
time τh is measured when C(ρ̂(t)) drops below the dashed
line. By varying N and c, we verify the relation (14) [with �
replaced by =], which leads to Eq. (1), in Fig. 4(b). A linear
fitting between ln �(t)/�(0) + ln t and ln N is found with a
constant slope λ + 1

2 ≈ 0.6 [see Eq. (14)], suggesting c1 ≈ 0.6
in Eq. (1). Note that here γ t is replaced by ln �(t)/�(0) for
numerical convenience.

IV. CONCLUSION

To summarize, we have answered an intriguing question:
When does the mean-field approximation of a dilute Bose gas
remain valid as the system evolves? Our answer is that for
unstable trajectories the mean-field dynamics breaks down at

the Ehrenfest time τh = (c1/γ ) ln N . The study was facilitated
by introducing particle-number phase space, where one can see
easily that the correspondence between many-body quantum
dynamics and mean-field dynamics is similar to the usual
quantum-classical correspondence.

As N can be varied in BEC experiments, it is now possible
to experimentally measure the logarithmic behavior of the
Ehrenfest time. One can compare physical observables in
the experiment with their theoretical mean-field values and
measure the Ehrenfest time when their discrepancy exceeds a
threshold. Bose-Einstein condensates with unstable or chaotic
mean-field descriptions are suitable for such experiments;
for example, spinor BECs [35,36] may be a good candidate
system.
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APPENDIX: QUANTUM EOM IN PNPS AND ITS
MEAN-FIELD APPROXIMATION

For the Hamiltonian in Eq. (8), the Schrödinger equation in
PNPS reads (� = 1)

i∂tϕ(x; t) =
∑

i

H 0
iiNxiϕ(x; t) +

∑
i

UiiNxi(xi − ε)ϕ(x; t)

+
∑
i =j

H 0
ijN

√
xi(xj + ε)ϕ(x + εeij ; t)

+
∑
i =j

UijNxixjϕ(x; t), (A1)

where ε ≡ 1/N and eij is an M-dimensional vector e
ij

k ≡
−δik + δjk , with k = 1,2, . . . ,M . We are especially interested
in the dynamics of a nearly coherent state. With conditions (i)
and (ii) in Sec. II B and N → ∞, Eq. (A1) becomes

i∂tϕ =
∑

i

H 0
iiNxiϕ +

∑
i

UiiNxi(xi − ε)ϕ

+
∑
i =j

H 0
ijN

√
xixjϕ exp[i(kj − ki)ε]

+
∑
i =j

H 0
ij

1

2

√
xi

xj

ϕ exp[i(kj − ki)ε]

+
∑
i =j

H 0
ij

√
xixj [(∂j − ∂i)|ϕ|] ϕ

|ϕ| exp[i(kj − ki)ε]

+
∑
i =j

UijNxixjϕ + o(1), (A2)

where ∂i ≡ ∂
∂xi

and ki(x; t) is the local wave vector of wave
function ϕ at (x; t), as discussed in condition (ii). The argument
of all ki and ϕ is (x; t), which is omitted.
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Now we assume a δ-function solution as in Eq. (9). By
setting the coefficients before δ, ∂iδ, and the derivatives of
coefficients before δ (which is necessary to reflect the plane-
wave phase structure) on both sides equal, keeping finite terms
in the large-N limit, we obtain

∂tx
0
i = 2 Im

∑
j

H 0
ij

√
x0

i x
0
j exp

[
i
(
k0
j − k0

i

)
ε
]
, (A3)

∂tk
0
i ε = −Re

∑
j

H 0
ij

√
x0

j

x0
i

exp
[
i
(
k0
j − k0

i

)
ε
] − 2

∑
j

Uij x
0
j ,

(A4)

where the argument t of all x0
i and k0

i is omitted for brevity.
Lengthy but straightforward calculations will verify that
Eqs. (A3) and (A4) are equivalent to Eq. (10), which is same
as the mean-field EOM for the one-particle RDM ρ̂.
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