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We present a comprehensive analysis of the nonlinear Landau-Zener tunneling. We find characteristic scal-
ing or power laws for the critical behavior that occurs as the nonlinear parameter equals to the gap of avoided
crossing energy levels. For the nonlinear parameter larger than the energy gap, a closed-form solution is
derived for the nonlinear tunneling probability, which is shown to be a good approximation to the exact
solution for a wide range of the parameters. Finally, we discuss the experimental realization of the nonlinear
model and possible observation of the scaling or power laws using a Bose-Einstein condensate in an acceler-
ating optical lattice.
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I. INTRODUCTION

It is common in the study of quantum systems to consi
only a finite number of energy levels that are strong
coupled. The special case of two coupled levels is of en
mous practical interest, and a vast amount of literature
been devoted to the dynamical properties of the two-le
systems @1#. One of the interesting phenomena is t
Landau-Zener tunneling between energy levels. As a b
physical process@2#, it has found wide applications in vari
ous systems, such as current driven Josephson junctions@3#,
atoms in accelerating optical lattices@4#, and field-driven su-
perlattices@5#.

A nonlinear two-level system, where the level energ
depend on the occupation of the levels, may arise in a me
field treatment of a many-body system where the partic
predominantly occupy two energy levels. For example, s
a model arises in the study of the motion of a small pola
@6#, a Bose-Einstein condensate in a double-well poten
@7–9# or in an optical lattice@10,11#, or for a small capaci-
tance Joseph junction where the charging energy may
important. In contrast to the linear case, the dynamical pr
erty of a nonlinear two-level model is far from being ful
understood, and many novel features have been reveale
cently @12,13#, including the discovery of a nonzero Landa
Zener tunneling probability even in the adiabatic limit wh
the nonlinear parameterC exceeds a critical valueV.

In this paper, we present an analytic study on the non
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ear Landau-Zener tunneling. For the behavior near the c
cal pointC5V, we find that the adiabatic tunneling probab
ity between the two energy levels rises as a 3/2 power law
the functionC/V21. Below the critical point, the tunneling
probability as a function of sweeping ratesa follows an
exponential law as in the linear case but with the expon
modified due to the nonlinearity. The explicit expression
the modification factor is obtained analytically, and it
found to decrease monotonously with the nonlinear para
eter and tends to zero at the critical point, indicating t
breakdown of the exponential law. Indeed, our analy
shows that the exponential law breaks down at the crit
point and turns into a 3/4 power law. Beyond the critic
regime, i.e.,C.V, we employ the stationary phase meth
and obtain a closed-form solution of the nonlinear tunnel
probability. This solution is compared with the numeric
solution by integrating the Schro¨dinger equation; they ex
hibit a good agreement for a wide range of parameters. At
end, we discuss the possible experimental observation of
results with Bose-Einstein condensates~BECs! in accelerat-
ing optical lattices.

Our paper is organized as follows. In Sec. II we introdu
the nonlinear two-level model and its equivalent classi
Josephson Hamiltonian. We discuss the connection betw
the two representations in the context of breakdown of ad
batic tunneling. In Sec. III, we investigate the tunneling d
namics of the nonlinear Landau-Zener model near the crit
regime and reveal the scaling or power laws that characte
©2002 The American Physical Society04-1
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the critical behavior. In Sec. IV, we show the exponential l
of tunneling probability is modified by the nonlinearity in th
subcritical regime. In Sec. V, we discuss the tunneling
namics in the regime beyond the critical point and derive
nonlinear tunneling probability using the stationary phase
proximation. In Sec. VI, we discuss how our findings may
observed experimentally.

II. NONLINEAR LANDAU-ZENER MODEL

Our model consists of two levels as in the stand
Landau-Zener model but with an additional energy diff
ence depending on the population in the levels. It is
scribed by the following Hamiltonian@12#:

H~g!5S g

2
1

C

2
~ ubu22uau2!

V

2

V

2
2

g

2
2

C

2
~ ubu22uau2!

D ,

~1!

where a and b are the probability amplitudes. The Hami
tonian is characterized by three parameters: the couplinV
between the two levels, the level biasg, and the nonlinear
parameterC describing the level energy dependence on
populations. The amplitudesa andb satisfy the Schro¨dinger
equation,

i
d

dt S a

bD 5H~g!S a

bD , ~2!

which conserves the total probabilityuau21ubu2 that is set to
be 1.

We want to examine the nonlinear Landau-Zener tunn
ing, i.e., how the system evolves when the level biasg
changes with time asg5at. We calla sweeping rate. In this
section, we focus on the adiabatic limit, that is, the sweep
ratea tends to zero.

As in the linear model, it is useful to find the adiaba
levels e(g) by diagonalizing the Hamiltonian~1!. It is
readily found that there are two eigenvalues whenC,V
while there can be four eigenvalues whenC.V, as demon-
strated in Fig. 1. AtC/V52 @Fig. 1~b!#, as the result of four
eigenvalues, a loop appears at the tip of the lower level in
regime2gc<g<gc , where

gc5~C2/32V2/3!3/2. ~3!

The corresponding eigenstates are not orthogonal to e
other for finiteg, but become so in the limits ofg→6`,
wheree→6ugu/2. For instance, at the lower level, we ha
(a,b)→(1,0) atg→2` and (a,b)→(0,1) atg→1`.

The direct consequence of the loop structure in Fig. 1~b!,
as first discussed in Ref.@12#, is that as a quantum stat
moves along the lower lever to the singular pointT, there is
no way to go further except to jump to the upper and low
levels. As a result, the nonlinear Landau-Zener tunneling
not zero even in the adiabatic limita→0. The underlying
mechanism of this interesting phenomenon is revealed w
02340
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an equivalent classical Hamiltonian, where the nonzero a
batic tunneling probability is viewed as the result of collisio
between fixed points.

With a5uaueiua andb5ubueiub, we introduce the popula
tion differences5ubu22uau2 and the relative phaseu5ub
2ua . In terms ofs andu, the nonlinear two-level system i
cast into a classical Hamiltonian system@8,13#,

He~s,u,g!5
C

2
s21gs2VA12s2cosu, ~4!

which has the form of a Josephson Hamiltonian. The fix
points of the classical Hamiltonian correspond to the eig
states of the nonlinear two-level system, and are given by
following equations:

u* 50,p, g1Cs* 1
Vs*

A12s* 2
cosu* 50. ~5!

The number of the fixed points depends on the nonlin
parameterC. For weak nonlinearity,C/V,1, there exist
only two fixed points (P1 andP2 in Fig. 2!, corresponding to
the maximum and minimum of the classical Hamiltonia
They are elliptic points, each being surrounded by clos
~elliptic! orbits. The fixed points are located on the lines

FIG. 1. Adiabatic energy levels~solid lines! for two typical
nonlinear cases:~a! C50.1, V50.2; ~b! C50.4, V50.2. The
dashed lines are for the linear case (C50). The corresponding
eigenstates are the fixed pointsPi ( i 51, . . . ,4) of theHe system
~4! as shown in~b!: OXT→P1 , MXW→P4 , WT→P3. Only P3

is an unstable saddle point, others are stable elliptic points.
4-2



en

in
-

c
o

he

ve
at

tic
e

losed
ed

ri-
e.
ed

adia-

ill

r-
r-
of
le
s

es
-

es

ing

esis

na-

il
r-

th
dia
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u* 5p and 0, meaning that the two corresponding eig
states of the two-level system have relative phase ofp. As
the level bias changes fromg52` to 1`, P1 moves
smoothly along the lineu* 5p from the bottom (s521) to
the top (s511), corresponding to the lower energy level
Fig. 1~a!; the other pointP2 moves from the top to the bot
tom, corresponding to the upper level.

For stronger nonlinearity,C/V.1, two more fixed points
appear in the window2gc,g,gc . As shown in Figs.
3~c!–3~e!, both of the new fixed points lie on the lineu*
5p, one being elliptic (P4) and the other being hyperboli
(P3) as a saddle point of the classical Hamiltonian. One
the original fixed pointP2 still moves smoothly withg, cor-
responding to the upper adiabatic level in Fig. 1~b!. The
other P1 moves smoothly up tog5gc , where it collides
with P3, corresponding to the branchOXT of the lower level
in Fig. 1~b!. The new elliptic pointP4, created atg52gc
together withP3, moves up to the top, corresponding to t
branchWXM of the lower level. The hyperbolic pointP3,
moves down away from its partnerP4 after creation and is
annihilated with P1 at g5gc , corresponding to the top
branchWT of the lower level. The collision betweenP1 and
P3 leads to nonzero adiabatic tunneling from the lower le
to the upper level, which is determined by the eventual f
of the fixed pointP1.

FIG. 2. Evolution of the phase-space motions of the Ham
tonian systemHe at C/V50.5 asg changes adiabatically. The a
rows indicate the shifting direction of the fixed pointsPi as g
increases. The closed curves are the periodic trajectories. In
case, no collision between fixed points occurs, implying zero a
batic tunneling probability.
02340
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III. CRITICAL BEHAVIOR NEAR CÄV

A. Adiabatic tunneling

For adiabatic change of the level biasg, a closed orbit in
the classical dynamics remains closed and the action

I 5
1

2p R sdu ~6!

stays invariant in time according to the classical adiaba
theorem@14#. The change ofg is adiabatic as long as th
relative change ofg in a period of the orbit is small. The
action equals the phase-space area enclosed by the c
orbit, and is therefore zero for a fixed point. Since the clos
orbits surrounding an elliptic fixed point all have finite pe
odsT, they should evolve with the area of each fixed in tim
We thus expect an elliptic fixed point to remain as a fix
point during the adiabatic change of the level biasg. For the
case ofC/V,1, the two fixed points~both elliptic! evolve
adiabatically throughout the entire sweeping ofg, implying
the absence of transition between the eigenstates in the
batic limit. This is still true for the fixed pointP2 in the case
C/V.1, meaning a state starting from the upper level w
remain in the upper level.

The adiabaticity is broken, however, whenP1 collides
with the hyperbolic fixed pointP3 to form a homoclinic orbit
where the periodT diverges. Nevertheless, the classical ‘‘pa
ticle’’ will remain on this orbit, because the orbit is su
rounded from both outside and inside by closed orbits
finite periods, which form barriers to prevent the partic
from escaping. After this collision, the homoclinic orbit turn
into an ordinary closed orbit of finite period, and evolv
adiabatically forg.gc according to the rule of constant ac
tion, which is now nonzero. This orbit eventually evolv
into a straight line of constants.

With these observations, we can obtain the tunnel
probability in the adiabatic limit,

Gad5
1

2
I ~sc!5

1

4p R s~u;Ec!du, ~7!

where

sc52A12~V/C!2/3 ~8!

and

Ec5
C

2
sc

21gcsc2VA12sc
2. ~9!

The above analysis is consistent with the nonlinear hyster
phenomenon presented in Ref.@13#, where a similar formula
for adiabatic tunneling probability was obtained.

The adiabatic tunneling probability can be evaluated a
lytically in the critical region ofd5C/V21→0. The singu-
lar point of the level bias is found to leading order as

gc.V~ 2
3 d!3/2. ~10!

-

is
-

4-3



th

f

lity

s
ve

t
abil-

ed
tic

of
y
f
d

e-

ical

-

of

ngto
er

c-

LIU, FU, OU, CHEN, CHOI, WU, AND NIU PHYSICAL REVIEW A66, 023404 ~2002!
FIG. 3. Evolution of the phase-space motions of the Hamil
He system atC/V52 asg changes adiabatically. The arrows ref
to the moving directions of the fixed points asg increases. In this
case, the fixed pointsP2 andP3 collide at the singular pointgc and
form a homoclinic orbit with nonzero action. This jump of the a
tion leads to nonzero adiabatic tunneling probability.
02340
The homoclinic orbit is confined near the critical point, wi
its top at

st.sc1A6d. ~11!

We expand the classical Hamiltonian to leading orders os
2sc andu2p, and find

u2p.A2gc~s2sc!

V
1

1

2
A2gc

V
~s2sc!

3/2. ~12!

From the area of this orbit the adiabatic tunneling probabi
for this limiting case is found to be

Gad5
1

2pEsc

st
~u2p!ds5

4

3p
d3/2. ~13!

Clearly, bothGad and its first-order derivative are continuou
at the critical point. However, its second-order derivati
turns to be discontinuous.

B. Nonadiabatic tunneling

In the linear caseC50, there is an exact formula tha
prescribes an exponential dependence of tunneling prob
ity on the sweeping rate@2#,

G lz5expS 2
pV2

2a D . ~14!

It is interesting to know how this exponential law is chang
due to the nonlinearity. We first focus on the near adiaba
case~i.e., aÞ0 anda!1).

For this purpose, we need to investigate the evolution
the fixed pointP1 as well as the nearby periodic orbits b
introducing the angle variablef, the canonical conjugate o
the action variableI. As in the adiabatic case considere
above, the transition probability is still given by the incr
ment of the action, i.e.,G5 1

2 DI . According to the standard
theory on the nonadiabatic correction@14#, we have

DI 5E
2`

1`

R~ I ,f!
dg

dt

df

ḟ
, ~15!

whereR(I ,f) is the periodic function off with zero aver-
age, and related to the generating function of the canon
transformation from variables (s,u) to (I ,f). The concrete
form of the functionR is not important our following discus
sions.

To evaluate the above integral, we need to expressḟ as a
function off itself. In the near-adiabatic limit, the change
the angle variable is equal to frequency of the fixed pointP1,
i.e., ḟ5v* . The frequency can be calculated by linearizi
the equations of motion~4! near the fixed point~5!,

v* 5VS 1

12~s* !2
2

C

V
A12~s* !2D 12

. ~16!

n

4-4
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On the other hand, by substitutingu* 5p into Eq. ~5! and
differentiating it with respect to time, we have

dt

ds*
5

V

a S 1

@12~s* !2#3/2
2C/VD . ~17!

Combining these equations, we can relates* to f and thus
expressḟ as a function off itself.

The principal contribution to the integral comes from t
neighborhood of the singularities of the integrand, which
the zeros of the frequencyḟ5v* (g). These zero points ar
easily found from Eq.~16! as

s0* 5@12~V/C!2/3#1/2. ~18!

The integral~15! is exponentially small if there are no re
singularities, and becomes a power law in the sweeping
if there is a singularity on the real axis.

We consider the case of critical nonlinearly,C/V51,
for which the singular point occurs ats* 50. Near this point,
we find from Eq. ~17! that v* .A3/2Vs* and f
.(1/4)(3/2)3/2(V2/a)(S* )4. Then, we have an approx
mate relationv* ;a1/4f1/4 near the singularity. Substitutin
these expressions back to Eq.~15!, and utilizing the fact that
]R/]f is independent ofa, we find a power-law behavio
for the tunneling probability

G;a3/4. ~19!

This power law, indicating a drastic change of tunneling b
havior beyond the critical regimeC5V, has been verified by
our numerical calculations@Fig. 4~a!#.

FIG. 4. Dependence of the tunneling probability on the sca
sweeping rateV2/a ~a! for C/V51, and~b! other values ofC/V. In
~b! we see a clear breakdown of the exponential law forC/V.1.
The open circles are obtained with the integration of Eq.~2!; the
solid squares are the numerical results of a Bose-Einstein con
sate in an accelerating optical lattice, wherea is the acceleration
~see Sec.VI for detailed discussions!.
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IV. TUNNELING IN THE SUBCRITICAL REGIME, CËV

We shift our attention to nonadiabatic tunneling for su
critical nonlinearity,C,V, where the zeros of the frequenc
v* are complex. The principal contribution to the integr
~15! comes from the neighborhood of this point and the
tegral can be evaluated by deforming the contour of integ
tion into the complex plane@14#. The tunneling probability is
found to be exponential

G;expS 2q
pV2

2a D , ~20!

where the factor in the exponent is given by

q5
4

pE0

A(V/C)2/321
~11x2!1/4S 1

~11x2!3/2
2

C

VD 3/2

dx.

~21!

For the linear caseC50, the factorq is exactly unit, consis-
tent with the standard Landau-Zener formula~14!. For the
nonlinear case,C/V.0, this factor becomes smaller tha
one, showing the enhancement effect on the nonadiab
tunneling. AsC/V goes up to 1, the critical point, this facto
vanishes, signaling the breakdown of the exponential l
Near the critical pointC/V51, we have the approximat
expressionq. 3

4 A2/3(12C/V)2, i.e., the factor converges t
zero with a square power law.

With numerical integration of the nonlinear Schro¨dinger
equation~2!, we show in Fig. 4 the sweeping ratea depen-
dence of the tunneling probability, where the slope of t
curve tends to be zero forC/V.1 clearly indicating the
breakdown of the exponential law. We read the factorq from
the slope and compare it with our analytical results in Fig
where we see a reasonable good agreement.

d

n-
FIG. 5. Dependence of the factorq on C/V.
4-5
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V. TUNNELING BEYOND THE CRITICAL REGIME, CÌV

In this section, we will discuss the nonlinear Landa
Zener tunneling beyond the critical regime and derive
tunneling probability using the stationary phase approxim
tion. We concentrate on the case of strong nonlinea
C/V@1, where there is a near unity tunneling probability
the upper adiabatic level even in the adiabatic limit. T
probability can only get larger when the sweeping rate
finite. We thus expect the amplitudeb in the Schro¨dinger
equation~2! remains small anduau;1 all the times, and a
perturbation treatment of the problem becomes adequate

We begin with the variable transformation,

a5a8expF2 i E
0

tS g

2
1

C

2
~ ubu22uau2! DdtG , ~22!

b5b8expF i E
0

tS g

2
1

C

2
~ ubu22uau2! DdtG . ~23!

As a result, the diagonal terms in Hamiltonian are tra
formed away, and we have

b85
V

2i E2`

t

dt expS 2 i E
0

t

@g1C~ ubu22uau2!#dtD .

~24!

We need to evaluate the above integral self-consiste
Because of the largeC, the nonlinear term in the exponen
generally gives a rapid phase oscillation, which makes
integral small. The dominant contribution comes from t
stationary pointt0 of the phase around which we have

2g1C~122ubu2!52ā~ t2t0!, ~25!

with

ā5a12CF d

dt
ubu2G

t0

. ~26!

We thus have

ubu25S V

2 D 2U E
2`

t

dt expS 2
i

2
ā~ t2t0!2DU2

. ~27!

We can differentiate this expression and evaluate its resu
time t0, obtaining a few standard Fresnel integrals with t

result@(d/dt)ubu2# t0
5(V/2)2Ap/ā. Combining this with the

relation ~26!, we come to a closed equation forā,

ā5a12CS V

2 D 2Ap

ā
. ~28!

The nonadiabatic transition probabilityG is given by
02340
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G512ubu1`
2 512S V

2 D 2U E
2`

1`

dt expS 2
i

2
ā~ t2t0!2DU2

512
pV2

2ā
. ~29!

Then the above result yields a closed equation for theG,

1

12G
5

1

P
1

A2

p

C

V
A12G, ~30!

where P5pV2/2a. In the adiabatic limit, i.e., 1/P50, we
find that G5121.7(V/C)2/3; in the sudden limit, 1/P→`,
we haveG512P, which is exact. In Fig. 6~a!, we compare
the above analytical results with that from directly solvin
the Schro¨dinger equation~2! and see a good agreement.

The above deduction is made for the strong nonlinear
however, its result can be extended to a wide range of
rameters if we take the quantityP as the 12G lz , the linear
Landau-Zener tunneling. Then, the above equation indic
that the nonlinear tunneling probability is a function of th
linear Landau-Zener tunneling and ratio between the non
ear parameter and the energy gap. This relation has b
confirmed by our numerical calculation. We have calcula
the nonlinear tunneling probability using Eq.~30! with 2500
pairs of G lz and C/V, randomly distributed in the rang
(0.05,0.95) and (1,20), respectively. These results are c
pared with the tunneling probabilities obtained by direc
integrating the Schro¨dinger equation~2! in Fig. 6~b!, where a
very good agreement is shown.

VI. EXPERIMENTAL REALIZATION

One possible experimental study of this simple two-le
nonlinear model is to use a BEC in an accelerating opt
lattice @11–13#. As shown in Refs.@12,13#, this BEC system
can be reduced to a two-level model near the edge of
Brillouin zone. The nonlinear Landau-Zener tunneling is t
transition between two lowest Bloch bands, as induced
the acceleration.

FIG. 6. Comparison between our analytic results and the
merical integration of the Schro¨dinger equation~2!.
4-6
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To check the validity of this experimental realization, w
numerically solve the Gross-Pitaevskii equation,

i
]c

]t
52

1

2 S ]c

]x
2 iat D 2

1V cos~x!c1Cucu2c, ~31!

which describes a BEC in an optical lattice with accelerat
of a. In the above equation, the variables are scaled to
dimensionless as in Refs.@11,12#. We prepare a Gaussia
wave packet that covers over 200 lattice sites, then slo
turn on the optical lattice and finally accelerate the latti
The duration of the acceleration is two Bloch periods to
sure the well separation of the portion of the wave pac
tunneled into the upper band and the rest remained in
lower band.

The results are shown in Fig. 4. The agreement with
two-level model is rather remarkable, especially the tran
n,

n,
er

e
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tion from the exponential law to power laws when the no
linearity C gets over the critical valueV. Some experiments
with BECs in accelerating optical lattices have already be
done along this direction@15#.

In summary, we have investigated analytically the tunn
ing dynamics of the nonlinear Landau-Zener model a
found many interesting phenomena as the power laws c
acterizing the critical behavior of the parameter depende
of tunneling probability. We have also checked the possi
ity of experimental study of this nonlinear tunneling with
BEC in an accelerating optical lattice.
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