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Abstract
We study a system of three coherently coupled states, where one state is shifted
periodically against the other two. We discover that this system possesses a
dark Floquet state that has zero quasi-energy and negligible population at the
intermediate state. This dark Floquet state manifests itself dynamically in terms
of the suppression of inter-state tunneling, a phenomenon known as coherent
destruction of tunneling (CDT). Owing to its different origin from the CDT
found in a two-state-driven system, we call it dark CDT. At a high-frequency
limit for the periodic driving, this Floquet state reduces to the well-known dark
state. Our results can be generalized to systems with more states and be verified
with easily implemented experiments within the current technologies.
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1. Introduction

Two-state and three-state models are the simplest quantum systems. Despite their simplicity,
they often provide very good approximations to describe realistic physical systems and are
capable of revealing a variety of fascinating quantum effects. The understanding of their
ubiquitous features is nowadays being exploited for the manipulation and control of the quantum
states of small systems involving single atoms, photons or nano-devices [1–3]. Coherent
destruction of tunneling (CDT, two-state models) and dark state (three-state models) are two
of the elegant prototype examples where a deep understanding gained from the quantum
coherent effects in these simple systems is impacting the development of quantum technology
in communication and computation.

CDT was discovered in a periodically driving double-well system [4]. It describes a
fascinating phenomenon whereby coherent tunneling between two wells (or the Rabi oscillation
between two states) is turned off by an externally enforced periodic level shift. Its understanding
is related to the dynamical localization [5], which occurs at isolated degenerate points of
the quasi-energies [4, 6]. The CDT has thus far generated significant interest, and has been
theoretically extended into various forms [7–20]. It has also been observed experimentally in
many physical systems, including modulated optical coupler [21], driven double-well potentials
for single-particle tunneling [22] and a single electron spin in diamond [23]. More recently,
it has also found application in tuning the tunneling parameter of a Bose–Einstein condensate
[24, 25].

Dark state is often discussed in terms of a three-state system where two of them are
coupled coherently to the intermediate state, as in the model system we study here. When all
of the coupling fields are on resonance with their respective coupled pair of states, we can
adopt the rotating wave approximation and change it into a suitable interaction picture with
all of the coupling coefficients becoming time independent. In this case, there always exists
a dark state, whose eigenenergy becomes uniformly zero, and the corresponding eigenvector
contains no projection onto the intermediate state. It is called dark as the intermediate state
is an excited state capable of emitting photons. This type of dark state is also known as
coherent population trapping [26], widely used in efficient population transfer through the
stimulated Raman adiabatic passage protocol. It has become the theoretical basis for several
well-established implementations of quantum control and rudimentary quantum information
processing gates.

In this paper, we report our surprising finding of an intimate relationship between the dark
state and the CDT by studying a three-state system. In this system, two states are coherently
coupled to an intermediate state and one of the two states shifts periodically against the other
two. We find that the CDT also exists in this three-state system, where the dynamical tunneling
from one state to the other two is suppressed by the periodic driving over a range of parameters.
However, this CDT for the three-state system has its own distinct feature: it is related to a
dark Floquet state, which has zero quasi-energy and negligible population at the intermediate
state. Quite interestingly, this dark Floquet state reduces to the well-known dark state in a
non-driving three-state 3-system [26] at a high-frequency limit. Therefore, we call this CDT
dark coherent destruction of tunneling (DCDT). These results can be generalized to the N -state
system. We also discuss a feasible experimental scheme where the visualization of the DCDT
can be achieved readily.
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Figure 1. The evolution of the probability at state |1〉 P1 = |c1|
2 for the system (1) for

various driving conditions: (a) A/ω = 0, (b) A/ω = 2.0 and (c) A/ω = 2.4. (d) The
minimum value of P1 (solid line) as a function of driving parameter A/ω. The two-
state results are plotted as a dash-dotted line for comparison. The initial condition is
{c1 = 1, c2 = 0, c3 = 0}. The other parameters are ω = 10, v = 1.

2. Three-state system

The driving three-state system is described by the Schrödinger equation (h̄ = 1)

i
dc1

dt
=

A

2
sin(ωt)c1 + vc2,

i
dc2

dt
= −

A

2
sin(ωt)c2 + vc1 + vc3, (1)

i
dc3

dt
= −

A

2
sin(ωt)c3 + vc2,

where c1, c2 and c3 are the amplitudes at three states |1〉, |2〉 and |3〉, respectively. v is
the coupling constant between the neighboring states. Energy state |1〉 is shifted periodically
against the other two with driving strength A and frequency ω. The normalization condition
63

j=1|c j |
2
= 1 is assumed.

To investigate the tunneling dynamics, we solve the time-dependent Schrödinger
equation (1) numerically with the initial state (1, 0, 0)T. The evolution of the probability
distribution P1 = |c1|

2 is presented in figure 1 for three typical driving conditions. For A/ω = 0
(figure 1(a)), we see that P1 oscillates between zero and one, demonstrating no suppression
of tunneling. For A/ω = 2.0 (figure 1(b)), the oscillations of P1 are seen limited between 0.8
and 1, showing the suppression of tunneling. At A/ω = 2.4 (figure 1(c)), P1 remains near unity,
signaling a complete suppression of tunneling between the energy states. This is the quantum
phenomenon well known as CDT [4].

We emphasize that what we find here is not a simple re-discovery of the CDT in a three-
state system. The CDT in this three-state model has its own distinct feature: the results shown
in figures 1(b) and (c) indicate that the suppression of tunneling occurs over a wide range of
system parameters. This is in stark contrast to the CDT in a two-state system [4], which occurs
only at isolated points of the parameters. The widening of the suppression regime found in
the driving three-state system is more clearly demonstrated in figure 1(d), where the minimum
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Figure 2. (a) Quasi-energies versus A/ω. Solid lines are for numerical results obtained
from the original model (1) and the circles are for the approximation results given by
the effective model (3). The time-averaged populations for the Floquet state in the quasi-
energy level (b) ε1, (c) ε2 and (d) ε3. The other parameters are v = 1, ω = 10.

value of P1 is used to measure the suppression of the tunneling. When min(P1) is not zero, the
tunneling is suppressed as the population is not allowed to be fully transferred from state |1〉 to
the other two states. It is clear from figure 1(d) that the suppression occurs as long as A/ω 6= 0.
For comparison, the results for the standard driven two-state system are plotted as dash-dotted
line in figure 1(d), where the extremely narrow peak width indicates that the CDT occurs only
at isolated points of the parameters.

There exists a fundamental reason that the CDT occurs at the isolated system parameters
in a two-state model: the CDT in the two-state model is related to the degeneracy of the quasi-
energy levels [4] and the degeneracy usually happens only at the isolated points. Therefore, the
significant widening of the suppression parameter range that we see in figure 1 indicates that the
CDT found here should have a different origin. To find this origin, we turn to the Floquet theory
for a periodically driving system. Similar to the Bloch states for systems with spatially periodic
potentials, the modulated system (1) has Floquet states, (c1, c2, c3)

T
= (c̃1, c̃2, c̃3)

T exp(−iεt),
where ε is the quasi-energy and the amplitudes (c̃1, c̃2, c̃3)

T are periodic of the modulation period
T = 2π/ω.

Our numerical results of the quasi-energies and the Floquet states for the modulated
system (1) are plotted in figure 2. There are three Floquet states with quasi-energies ε1, ε2 and
ε3. We immediately notice from figure 2(a) that the quasi-energy ε2 for the second Floquet state
is always zero for all of the values of A/ω. We call this state dark Floquet state in analogy to
the well-known dark state. This dark Floquet state stands out not only for its zero quasi-energy
but also for its unique population distribution among the energy states. We display the time-
averaged population probability 〈Pj〉 = (

∫ T
0 dt |c j |

2)/T for a given Floquet state (c1, c2, c3)
T

in figures 2(b)–(d). Note that the time-averaged populations are almost independent of the
frequency in the high-frequency regime. The Floquet state with 〈Pj〉 > 0.5 is generally regarded
as a state localized at the j th energy state. As seen in figure 2(c), the dark Floquet state has
almost zero population at energy state |2〉 while the population 〈P1〉 > 0.5 at |1〉. In other words,
the dark Floquet state is localized at |1〉. The other two Floquet states have identical population
distribution. Since all of their populations 〈Pj〉6 0.5, these two Floquet states are not localized.
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We note that a Floquet state with zero quasi-energy was also found in [19]. However, it is
not related to the CDT discovered in the same system and its relation to the dark state is not
discussed.

It is not difficult to see the suppression of the tunneling seen in figure 1 is linked to the
existence of the dark Floquet state. We expand the initial state in terms of the Floquet states

(1, 0, 0)T
= b1|ε1〉 + b2|ε2〉 + b3|ε3〉. (2)

During the dynamical evolution, the expansion coefficient bi evolves as bi exp (−iεi t). Hence,
the |bi |’s are time independent. We look at the case A/ω = 2.4, where |ε2〉 has population one
at state |1〉 while the other two states have zero population at |1〉. In this case, we have |b2| = 1
and b1 = b3 = 0, which corresponds to a complete suppression of the tunneling from |1〉 to |2〉

and |3〉. For the other values of A/ω, similar arguments can be made. This shows that the CDT
observed in figure 1 has a different origin: it is the consequence of the dark Floquet states.
Therefore, we call it dark coherent destruction of tunneling (DCDT).

Interestingly, this dark Floquet state can be reduced to the well-known dark state in a
non-driven three-state 3-system at a high-frequency limit. By introducing the transformation
cm = am exp[±iA cos(ωt)/(2ω)] (+ for m = 1 and − for m = 2, 3) and averaging out the high-
frequency terms, one can obtain a non-driven three-state system

i
da1

dt
= v J0(A/ω)a2,

i
da2

dt
= v J0(A/ω)a1 + va3, (3)

i
da3

dt
= va2,

where J0(A/ω) is the zeroth-order Bessel function. The famous dark state (also known as
coherent trapped state) for equation (3) is given by (a1, a2, a3)

T
=

1
√
M

(−v, 0, v J0(A/ω))T,

whereM= v2 + [v J0(A/ω)]2. This dark state corresponds to the dark Floquet state. Similarly,
this dark state is always localized at state |1〉 as v2 > [v J0(A/ω)]2 and has zero population at
state |2〉. This state is completely localized at state |1〉 when J0(A/ω) = 0. We have computed
the eigenvalues of model (3) and compared them (circles) with the quasi-energies (black solid
lines) in figure 2(a). The agreement is almost perfect.

3. Generalization to the N-state system

Our analysis above is given for a three-state system and the original CDT was found in a two-
state system. These results can be generalized to an N -state system, where one state is shifted
periodically against all of the other states. The equations of motion are

i
dc j

dt
= v(c j−1 + c j+1) + F j(t)c j , (4)

F1(t) =
A

2
sin(ωt), F j 6=1(t) = −

A

2
sin(ωt),

where c j60 = c j>N = 0.
The quantum dynamics of the driven N -state systems is investigated by direct integration

of the time-dependent Schrödinger equation (4) with the state initially prepared on the state |1〉.
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Figure 3. (a) The minimum value of P1 as a function of A/ω for N = 4 (dash dotted
line) and N = 5 (solid line). The initial conditions are c1(0) = 1, c j (0) = 0( j 6= 1).
Quasi-energies versus A/ω for (b) N = 4 and (c) N = 5. The solid lines are for the
numerical results obtained from the model (4) and the circles are for the approximation
results given by the effective model (5). (d) The time-averaged probability distribution
of the Floquet state corresponding to ε = 0 in figure 3(c). The other parameters are
v = 1, ω = 10.

The CDT is found to exist. The minimum value of P1 = |c1|
2 as a function of A/ω is presented

in figure 3(a) for N = 4 and 5. When N = 4, the CDT occurs at an isolated point of parameters
(dash dotted line in figure 3(a)), where two of the four quasi-energy levels become degenerate
(figure 3(b)). This is exactly the same as in the two-state system. When N = 5, the parameter
range where CDT occurs is extended substantially (solid line in figure 3(a)) as in the three-
state model. Furthermore, this five-state system also has a dark Floquet state: as seen in
figure 3(c), one of the quasi-energies always equals to zero. This dark Floquet state has
negligible population at all of the even j th states (figure 3(d)).

These numerical results with N = 4, 5, together with the known results for N = 2, 3,
clearly suggest that (i) the dark Floquet state and the associated DCDT exist in all of the odd-
N -state systems; and (ii) the original CDT, which occurs at the isolated parameter points, exists
in all of the even-N -state systems. This general conclusion can be proved analytically at a high-
frequency limit.

Following the procedure used in the three-state system, we introduce the trans-
formation c1 = a1 exp[−i

∫
A sin(ωt)/2 dt], c j 6=1 = a j exp[i

∫
A sin(ωt)/2 dt], where

a j(z) are slowly varying functions. By using the expansion exp[±iA cos(ωt)/ω] =∑
k(±i)k Jk(A/ω) exp(±ikωt) in terms of the Bessel functions and neglecting all of the

orders except k = 0 for a high-frequency limit, we can reduce the coupled equations (4) to a
non-driven model

i
da
dt

= H̄a, (5)

where a = (a1, a2, . . . , aN )T. The matrix H̄ is tridiagonal with non-zero elements H̄12 = H̄21 =

veff = v J0(A/ω), H̄n,n+1 = H̄n+1,n = v for n = 2, . . . , N − 1. The effective coupling constant veff

between state |1〉 and state |2〉 is tunable with the driving parameters.
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The eigenvalues and the eigenvectors of the tridiagonal N × N matrix H̄ enjoy some very
interesting properties, whose rigorous proofs can be found in the appendix.

(a) When N is even, for any non-zero veff and v, all of the eigenvalues of the matrix H̄ are
non-zero while two of the eigenvalues are zero for veff = 0.

Remark 1. This means that when N is even, two quasi-energy levels of the driven model (4) are
degenerate at the isolated points where veff = v J0(A/ω) = 0. The CDT occurs at these isolated
points.

(b) When N is odd, one and only one eigenvalue of H̄ always equals to zero and, for the
corresponding eigenvector (w1, w2, . . . , wN )T of H̄ , the inequality |w1|

2 > 0.5 holds for
a finite range of parameters; for any other eigenvector (w1, w2, . . . , wN )T of H̄ , one has
|w j |

2 6 0.5.

Remark 2. When N is odd, the system always has one and only one dark Floquet state, which
is localized over a finite range of parameters. Correspondingly, the DCDT occurs over a finite
range of parameters.

4. Experimental observation

By mapping the temporal evolution of the quantum systems into the spatial propagations of
the light waves, the engineered waveguides have provided an ideal platform to investigate a
wide variety of coherent quantum effects [27, 28]. The phenomenon of the DCDT can also be
observed with this kind of waveguide system. The discrete model (4) can be simulated by the
light propagation in an array of N waveguides placed closely and with equal spacing.

In optics, the electric field φ(x, z) of light obeys the wave equation [29, 30]

i
∂φ

∂z
= −

1

2

∂2φ

∂x2
− pR(x, z)φ. (6)

Here x and z are the normalized transverse and longitudinal coordinates, and p describes
the refractive index contrast of the individual waveguide. Periodic driving is realized by
the harmonic modulation of the refractive index of the waveguides along the propagation
direction [29, 30]. For our system, the periodic modulation of the first waveguide has a
phase difference of π against the modulations for all of the other N − 1 waveguides. The
corresponding refractive index distribution of this kind of waveguide system is given by

R(x, z) =

1∑
j=−(N−2)

[
1 + f j(z)

]
exp

[
−

(
x − jws

wx

)6
]

, (7)

f1(z) = µ sin (ωz) , f j(z) = −µ sin (ωz) ( j 6= 1)

with the waveguide spacing ws, the channel width wx , the longitudinal modulation amplitude µ

and the modulation frequency ω. Therein the super-Gaussian function exp(−x6/w6
x) describes

the profile of the individual waveguides with widths wx .
To investigate the dynamics of the light tunneling, we simulate the modulated waveguides

array (N = 2, as in figure 4(a); and N = 3, as in figure 4(b)) by integrating the continuous
wave equation (6). In our numerical simulation, the initial states are chosen as the lowest
Wannier modes for the isolated individual waveguides, and the dimensionless parameters are

7
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Figure 4. The refractive index distribution R(x, z) of a waveguide array for (a) N = 2
and (b) N = 3. Propagation dynamics |φ(x, z)|2 in a two-channel waveguide (a) at (c)
µ = 0.2; (e) µ = 0.18, and a three-channel waveguide (b) at (d) µ = 0.2; (f) µ = 0.18.
The other parameters are seen in the text. In all of the cases, the top waveguide is excited
at z = 0.

set as wx = 0.3, ws = 3.2, p = 2.78 and ω = 3.45 × (2π/100). As in the current experimental
setup [29, 30], wx and ws are in units of 10 µm, and p = 2.78 corresponds to a real refractive
index of 3.1 × 10−4.

The dynamics of the light tunneling is visualized in figure 4. A perfect tunneling inhibition
is illustrated in figures 4(c) and (d) at µ = 0.2 which corresponds to the degeneracy point of the
quasi-energy levels in the two-state system. When the modulation amplitude is slightly detuned
from µ = 0.2 to 0.18, no suppression of the tunneling occurs in the two-channel waveguide
(see figure 4(e)), while the strong suppression of tunneling is still observed in the three-channel
waveguide (see figure 4(f)). Our numerical simulations of the continuous wave equation (6)
confirm the widening of the suppression regime predicted by the driving three-state model (1).
Moreover, we have simulated the other waveguide systems with more than three waveguides by
directly integrating the continuous wave equation (6) (not shown here). These numerical results
verify firmly the existence of the DCDT in the odd-N -state systems.

The discrete model (1) also describes the dynamics of a quantum particle in a triple-well
system where one well is periodically driven with respect to the others. The driving field applied
to our system is different from those extensively studied in the literature where the CDT is
caused by the level degeneracy rather than the dark Floquet state. The advantage of our driving
is that it can be used to manipulate the population distribution of the dark Floquet state and thus
produce a novel phenomenon of the DCDT. Another possibility to realize the discrete model (1)
is a three-level 3-system. Let us consider three energy levels |1〉, |2〉 and |3〉. Two metastable
states |1〉 and |3〉 are coherently coupled to the intermediate state |2〉 via a pump laser with
frequency ωp and a dump laser with frequency ωd. We fix the pump laser frequency ωp and chirp
the dump laser frequency as ωd = ω′

d + A sin(ωt)/h̄ with ω′

d constant. By setting one-photon
detuning E2 − E1 − h̄ωp = 0 and two-photon detuning E3 − E1 − (h̄ωp − h̄ωd) = A sin(ωt),
the effective Hamiltonian in the rotating wave approximation can be reduced to the discrete
model (1) in which the coupling strength between the states is determined by the pulsed Rabi
frequencies.

8
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5. Conclusion

In summary, we find that the CDT also happens in a three-state quantum system, where one
energy state is shifted periodically against the other two states. We call this type of CDT dark
coherent destruction of tunneling (DCDT) as it is related to the existence of a dark Floquet
state in this three-state system. The dark Floquet state has zero quasi-energy and negligible
population at the intermediate state. It reduces to the well-known dark state of a non-driven
three-state system at a high-frequency limit. These results can be generalized to a periodically
driven N -state system. We have also pointed out that the observation of the DCDT is well within
the capacity of the current experiments.
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Appendix

The N × N tridiagonal matrix H̄ has the following non-zero matrix elements: H̄12 = H̄21 = veff,
H̄n,n+1 = H̄n+1,n = v for n = 2, . . . , N − 1. veff is tunable and v 6= 0 is fixed. The eigenvalues and
the eigenvectors of H̄ have the following properties.

Property 1. When N is odd, one and only one eigenvalue of H̄ always equals to zero.

Proof. Let λ1, λ2, . . . , λN be all of the eigenvalues of the matrix H̄ , then DN = det(H̄) =

λ1λ2 · · · λN . It is easy to verify that D2 = −v2
eff, D1 = D3 = 0 and the relation DN =

−v2 DN−2(N > 3). Therefore, one has D2k−1 = 0 and D2k = (−1)kv2k−2v2
eff (k = 1, 2, 3, . . .).

When N is odd, DN = λ1λ2 · · · λN = 0, which means that at least one eigenvalue equals to zero
regardless of the values of veff and v. For the zero eigenvalue, the eigenequation is H̄w = 0,
where w = (w1, w2, . . . , wN )T. When expanded, the equation is turned into the following
equations: veffw2 = 0, veffw1 + vw3 = 0, vw j−1 + vw j+1 = 0 ( j = 3, 4, . . . , N − 1), vwN−1 = 0.

There is only one non-trivial solution. For veff 6= 0, it is given by

w =
1

√
M

(w0
1, w

0
2, . . . , w

0
N )T (A.1)

with w0
1 = (−1)(N−1)/2v/veff, w0

2k = 0, and w0
2k+1 = (−1)(N−2k−1)/2 where k = 1, 2, . . . , (N −

1)/2 and M=
∑N

j=1 |w0
j |

2 is the normalization factor. For veff = 0, the solution is w =

(1, 0, . . . , 0)T. This shows that matrix H̄ has one and only one eigenvalue equal to zero. ut
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Property 2. When N is even, for any non-zero veff, all of the eigenvalues of the matrix H̄ are
non-zero while two of the eigenvalues are zero for veff = 0.

Proof. If veff 6= 0, when N is even, then DN = (−1)N/2vN−2v2
eff = λ1λ2 · · · λN 6= 0. Thus, all

of the eigenvalues of the matrix H̄ are non-zero. When veff = 0, it is obvious that DN =

λ1λ2 · · · λN = 0. There are zero eigenvalues. With veff = 0, the tridiagonal matrix of H̄ is divided
into two uncoupled subspaces, i.e. H̄ = 0 ⊕ F , where F is a tridiagonal matrix with non-zero
elements Fn,n+1 = Fn+1,n = v. It is clear that F possesses property 1 and has only one zero
eigenvalue. H̄ thus has two zero eigenvalues. ut

Property 3. If λ is an eigenvalue of H̄ with eigenvector (w1, w2, . . . , wN )T, then −λ is an
eigenvalue of H̄ with the corresponding eigenvector (w′

1, w
′

2, . . . , w
′

N )T where w′

j = (−1) jw j .

Proof. The eigenvalue equation H̄w = λw can be written in the form 6N
j=1 H̄i jw j = λwi ,

where H̄i j = 0 when |i − j | = 0 and |i − j |> 2. Multiplying by (−1)i−1λ, we obtain
6N

j=1 H̄i j(−1) jw j = −λ(−1)iwi and have the proof. ut

Property 4. When N is odd, for the eigenvector (w1, w2, . . . , wN )T of H̄ belonging to λ =

0, the inequality |w1|
2 > 1/2 holds for a finite range of parameters; For an eigenvector

(w1, w2, . . . , wN )T of H̄ belonging to λ 6= 0, one has that |w j |
2 6 1/2, whether N is odd or

even.

Proof. According to equation (A.1), it is clear that the inequality |w1|
2 > 0.5 is valid only

when (v/veff)
2 > (N − 1)/2. When λ 6= 0, the two eigenvalues λ and −λ are distinct and

the corresponding eigenvectors are orthogonal to each other. With property 3, one has
6

(N+1)/2
k=1 |w2k−1|

2
= 6

(N−1)/2
k=1 |w2k|

2 when N is odd; 6
N/2
k=1 |w2k−1|

2
= 6

N/2
k=1 |w2k|

2 when N is even.
With the normalization condition 6N

j=1|w j |
2
= 1, we immediately obtain that |w j |

2 6 0.5. ut
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