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An analytical formula of density oscillations is found formetallic films of finite thickness. The result shows that
the quantum size effect on density oscillations is surprisingly more evident in the middle of the film. As a
result, the density oscillations in a finite film cannot be regarded as a simple addition of the two sets of Friedel
oscillations for half-infinite metal no matter how thick the film is. This analytical result is confirmed by our
numerical jellium-model computation. Such quantum size effect should exist in all the electron-mediated
interactions that are driven by the Friedel oscillations. As an example, we indeed find it also exists in
Ruderman–Kittel–Kasuya–Yosida interactions inside films.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Friedel oscillations are electron density waves induced by
impurities or step edges[1]. Due to their fundamental importance,
the Friedel oscillations have been widely studied in many different
systems. They were observed directly in experiment with scanning
tunneling microscopy (STM) [2–7], and recently, Friedel oscillation
has been used to see the Fermi surface in real space [8]. Friedel
oscillations have also been studied in metallic films, in particular,
there appear indications that Friedel oscillations may be responsible
for the robust quantum size effects observed in Pb (111) films [9].

Motivated by this development, we conducted a careful examina-
tion of the density oscillations in metallic films. For a half-infinite
metallic film, the deviation of the electron density from the averaged
value (Friedel oscillations) has the following form [10]:

δn xð Þ∼ cos 2 kfxð Þ
x2

; ð1Þ

where kf is the Fermi wavevector and x is the distance from the
surface. As one may expect, for a not-so-thin metallic film, its density
oscillation should be a simple addition of two sets of the Friedel
oscillations in Eq. (1) that originate from the two surfaces. We find an
analytical formula for the density oscillations in a finite metallic film.
This analytical formula has two important features: (1) it cannot be
regarded as a simple addition of two sets of Friedel oscillations
in Eq. (1); (2) it shows that the quantum size effect on density

oscillation is surprisingly more evident in the middle of the film. This
analytical result is confirmed by our numerical computation with
jellium model.

This strong finite size effect in the middle of the film can be
attributed to the discretization of energy bands induced by the
confinement of two surfaces. In obtaining Eq. (1), one needs to replace
a summation over discretized wavevector k with an integration [10].
However, in the middle of the film, one always has x∼L/2 (L is the
thickness of the film) and consequently xδk∼π (δk∼2π/L) no matter
how thick the film is. This finite xδk prevents replacing the summation
with integration.

It should be noted here that such quantum size effect should
universally exist in all the electron-mediated interactions that are
driven by the Friedel oscillations[11–19]. Therefore, our results will
have wide applications in nano-materials. As an example, we have
investigated the Ruderman–Kittel–Kasuya–Yosida (RKKY) interaction
inside films, which is regarded as one of the fundamental interactions
in magnetic multilayer system [15–17]. We find that quantum finite
size effect cannot be ignored when the distance between two
magnetic moments is bigger than 0.2L(L is the total film thickness).

2. Quantum size effect in Friedel oscillations

Consider a free-standing metallic film of thickness L (Fig. 1). For
simplicity, we ignore the ionic lattice and the Coulomb interactions
and treat the film as a collection of free electrons confined between
two potential barriers at the surfaces. In this case, the wave functions
for electrons can be written as

ψkn ;ky ;kz
= ψkn

xð Þ exp i kyy + kzz
� �h i

; ð2Þ
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where kn is the wave vector along the x direction and it is discretized
due to the confinement by the two surfaces. The corresponding
energy up to a trivial constant is

E kn; ky; kz
� �

=
1
2

k2n + k2y + k2z
� �

: ð3Þ

When the two surfaces are regarded as two impenetrable walls,

we have ψkn xð Þ =
ffiffiffi
2
L

r
sin nπx= Lð Þ[20,21]. This implies that in the

region far away from the film surfaces we should have

ψkn
xð Þ =

ffiffiffi
2
L

r
sin knx−γ knð Þ½ � ð4Þ

with

kn =
nπ
L ; L = L + 2δ; ð5Þ

The parameter δ(≪L) is to be determined, γ(kn) is an additional
phase shift in the wave function when considering the factor that
electrons can penetrate into the vacuum. Generally, the amplitude is a
function of wave vector kn, and should be expressed as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2= L + lnð Þ

p
,

where ln∼O(1) is a function of kn. In Appendix A, we find that
replacing

ffiffiffiffiffiffiffiffiffiffi
2 = L

p
with

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2= L + lnð Þ

p
just adds O(1/L3) terms in the

electron density, so we can ignore it.
As a result, the electron density in the region far away from the

film surface has the following form:

n xð Þ = 1
πL

∑
N

n=1
k2f −k2n
� �

sin2 knx−γ knð Þ½ �; ð6Þ

where N is the total number of occupied subbands. The Fermi wave
vector kf can be expressed as

kf =
π
L N + βð Þ; β∈ 0;1ð Þ: ð7Þ

Note that the system has a symmetry that

ψ2
kn

xð Þ = ψ2
kn

L−xð Þ; ð8Þ

this symmetry leads to

γ knð Þ = nπL
2L

−π
2
m1 = −knδ−

π
2
m2; ð9Þ

where bothm1 andm2 are integers. It is reasonable to assume that the
phase shift γ is a continuous function of k and γ(0)=0. This means
that we have m2=0 and γ(k)=−kδ. Regarding δ as a constant, with
the phase rule [22]

2
k2f

∫kf
0
kγ kð Þdk = −π

4
; ð10Þ

we have δ=(3/8)(2π/3)2/3rs. This recovers the results by Schulte [23]
and Stratton [24]. Generally, δ is not a constant and in this paper we
treat it as a function of n/N (Eq. (A.1) in Appendix A). With the above
results, we can now sum out the electron density in Eq. (6) and arrive
at (see Appendix A for derivation details)

n xð Þ = n0f1 +
3 1−βð Þη2 xð Þcos2 kf−βk1ð Þx−γf½ �

2kfxð Þ2

+
3βη2 xð Þcos2 kf + 1−βð Þk1ð Þx−γf½ �

2kfxð Þ2 g;

ð11Þ

where η xð Þ = πx
L

� �
= sin

πx
L

� �
and k1=π/L.

At the limit x/L→0, we can replace sin πx/L with πx/L, and obtain

n xð Þ = n0 1 +
3ξcos2 kfx−γfð Þ

2kfxð Þ2
" #

ξ = 1ð Þ; ð12Þ

which recovers the Friedel oscillations of electron density in a
half infinite metal [10]. This is no surprise: in a half infinite
metal, we have L→∞ so that the limit x/L→0 is always satisfied. In
contrast, for a film of finite thickness, we always have x/L∼1/2
near the middle of the film. In other words, we cannot reach the limit
x/L→0 in the central region of the film nomatter how thick the film is.
Note that the use of ξ in Eq. (12) is for the convenience of future
discussion.

The analytical formula in Eq. (11) is the central result of this
work. A careful examination of the equation offers an insight
into the physics behind the analytical form. We first notice that
there are twowave vectors in Eq. (11), one is 2(kf−βk1) and the other
is 2[kf+(1−β)k1]. The difference between them is k1=π/L, which is
small for a thick film (L≫1). However, when x is comparable to L such
as in the central region of the film, the phase shift caused by the
difference k1 is not small at all. Therefore, we have to retain k1. In
contrast, when x/L is small, we can ignore k1. Since we have η(x)∼1 at
the same time, Eq. (11) is reduced to the well-known result in
Eq. (12).

The above analysis also indicates that the electron density in
Eq. (11) is the result of the surface confinement because the difference
k1 is caused by the discretization of electron energy bands. At
places where x is small compared to the film thickness L, the system
does not feel much of the discretization and one can replace
the summation in Eq. (6) with integration and obtain Eq. (12).
However, when x is comparable to L, the discretization is always
felt by the system and one can not replace the summation with
integration.

We have shown and explained that the electron density in the
central region of the film is different from a well-known result.
However, one may still wonder whether the electron density in a film
can be regarded as a simple superposition of two sets of Friedel
oscillations for a half-infinite metal. In other words, the question is
whether n(x) in Eq. (11) is approximately equal to

ns xð Þ = n0 1 +
3 cos 2 kfx−γfð Þ

2kfxð Þ2 +
3 cos 2 kf L−xð Þ−γf½ �

2kf L−xð Þ½ �2
( )

: ð13Þ

To answer this question, we focus on a small interval near the
middle of the film. In such an interval, the electron density should take

x
0

L

Fig. 1. A metallic film of thickness L.
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the form of Acos(kfx+Θ). Straightforward computation shows the
amplitude A obtained from Eq. (11) is

A1 =
3n0η

2 xαð Þ
2kFxαð Þ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2β−1ð Þ2sin2ϕα + cos2ϕα

q
; ð14Þ

where xα is the central point of the interval and ϕα =
π
L
xα. The

amplitude from Eq. (13) is

A2 =
3n0

2kFxαð Þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 xαð Þ + 2ξ xαð Þcos 2βπð Þ + 1

q
; ð15Þ

where ξ(xα)=[xα/(L−xα)]2. The deviation of the ratio between the
two amplitudes from one is

ΔA xα;βð Þ = A1

A2
−1 = η2 xαð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2β−1ð Þ2sin2ϕα + cos2ϕα

ξ2 xαð Þ + 2ξ xαð Þcos 2βπð Þ + 1

s
−1:

ð16Þ

This deviation measures the difference between the true electron
density in Eq. (11) and the density resulted from the simple
superposition as given in Eq. (13). Since β is a function of the film
thickness L, ΔA is also a function of xα and L.

We have plotted ΔA of four situations that xα=0, L/10, 2L/5, L/2 in
Fig. 2. It is evident from the figure that ΔA is zero at only a couple of
isolated values of β. The figure also shows that ΔAN0 when βbβ0 or
βN1−β0 and ΔAb0 when β0bβb1−β0. Our numerical results show
that the variation of β0 is very small (from 0.18 for xα/L→0 to 0.13 for
xα/L=1/2). This means that we can regard ΔA not changing its sign
for all xα. Since β is a function of the film thickness L, the results shown
in Fig. 2 conclude that the electron density in a metallic film cannot be
regarded as the simple superposition of two sets of Friedel oscillations
in half infinite metal. As indicated in the figure, the Friedel oscillations
are enhanced up to about 23%.

We now calculate the electron density using the density functional
theory (DFT) for a comparison with the analytic form in Eq. (11). To
overcome the instability caused by the long range of the Coulomb
interaction between electrons, we apply the method used by Monnier
and Perdew [25], which was originally proposed in Ref. [26].

Our numerical results for Pb film (L=60d0, β=0.17) are plotted in
Fig. 3 and are compared to our analytical result Eq. (11). It is clear that
the two curvesmatch each other quite well when x is larger than 10d0.
This implies that our analytical results are even valid when the
Coulomb interaction and correlation effects are taken into account.
Note that the parameter β can be obtained from our numerical results.

It should be emphasized here that it is reasonable that our
analytical result Eq. (11) with free electron model agrees well with

the numerical results, where the influence of the interaction between
electrons is taken into account. This was addressed in Ref. [10]. In a
half infinite metal, free electron model gives a density expressed by
Eq. (12) with ξ=1 (sine-wave form of wave function is used in
calculating Eq. (12)).When the influence of interactions is considered,
one can substitute the sine-wave form of wave into the self-consistent
Kohn–Sham equation, and get the wave function that have taken into
account the influence of the Coulomb interactions, exchange and
correlation effects. It was found that the parameter ξ increases from
1.004 at rs=2 to 1.07 at rs=6 [10]. This implies that free electron
model is sufficient in calculating Friedel oscillations.

Although we need L≫1 in our derivation, we find that a
significant portion of the film around the middle of the film can be
well described by Eq. (11) even when the film is quite thin. For
example, as shown in Fig. 4, the numerical results for Pb (L=11d0,
β=0.74) can be fitted very well with our theoretical expression. Note
that one may find Eq. (11) does not have space inversion symmetry
for a small L because we have omitted some high order terms in the
cosine functions, in fact we should use Eq. (A.7) for the symmetry
requirement when the film is not very thick.

Note that our analytical result is effective in most of the region
inside the film except the areas near the two surfaces when the film
thickness is large enough. So, it is a supplementary result to the work
of Takahashi and Onzawa [27], in which, the electron density near the

Fig. 2. The deviation ΔA as a function of β for different values of xα=0, L/10, 2L/5, L/2.

Fig. 3.Numerical results of the ratio n/n0 for Pb film of thickness L=60d0 in comparison
with the analytical results.

Fig. 4.Numerical results of the ratio n/n0 for Pb film of thickness L=11d0 in comparison
with the analytical results.
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metal surface obtained from a “shifted” step potential was shown to
agree well with the jellium calculations.

3. Quantum size effect in RKKY interaction

We find that such effect also exists in RKKY interactions inside
films. An analytical formula, different from the traditional one, is
obtained for the indirect exchange coupling between two localized
magnetic moments in a finite film. In this paper, we focus on the
quantum size effect in RKKY interaction and ignore the topological
property of Fermi surface [17]. According to the works of Ruderman,
Kittel [28], Kasuya [29], and Yosida [30], the RKKY interaction
between two localized magnetic moments can be expressed as [31]

HRKKY = În ⋅ ÎmJ jRn−Rm jð Þ; ð17Þ

and

J jR jð Þ = 4J2m⁎k4f
2πð Þ3ℏ2

cos 2kfR
2kfRð Þ3 − sin 2kfR

2kfRð Þ4
( )

: ð18Þ

Where În are the localized moments, J is the exchange coupling
constant, Ef is the Fermi energy, and kf is the Fermi wave vector.

In the case of film, for simplicity, we impose the periodic boundary
condition and compute J f Rð Þ + J f R−L x̂

� �
(the superscript f denotes

film) by changing the integration of qx in Eq. (13) of Ref. [32] to
summation

J f Rð Þ + J f R−Lx̂
� �

= − m⁎J2

2πð Þ5ℏ2 ∫∫∑
qx

cos q⋅RF qð ÞΔqxdqydqz; ð19Þ

where F(q) is (Eq. (15) in Ref. [32])

F qð Þ = 1
2
kf +

1
2q

k2f −
1
4
q2

� �
ln j q + 2kf

q−2kf
j : ð20Þ

To further simplify the matter, we assume that the two magnetic
impurities have the same y, z coordinates. In this case, we can use
polar coordinates with R parallel to the x axis (perpendicular to the
film surfaces). After integration over ϕ, Eq. (19) becomes

Jf Rð Þ + Jf L−Rð Þ = − m⁎J2

2πð Þ4ℏ2 ∫
∞

0
F qð Þq2 ∑

θ
cos qR cos θð Þ sin θΔθdq

=
m⁎J2

2πð Þ4ℏ2 R
−1i−1η Rð Þ∫∞

−∞
eiqR−iI qð ÞRF qð Þqdq;

ð21Þ

where

I qð Þ = q− qL
2π

	 

2π
L
−π

L
; ð22Þ

η Rð Þ =
R
L
π

sin
R
L
π
; ð23Þ

the square bracket denotes round-down to the closest integer. Finally,
we obtain

J f Rð Þ + J f L−Rð Þ = 4J2m⁎k4f
2πð Þ3ℏ2 fBf Rð Þcos 2kfR + Φf

1 Rð Þ
� �
2kfRð Þ3

−
Cf Rð Þsin 2kfR + Φf

2 Rð Þ
� �
2kfRð Þ4 g;

ð24Þ

where

Bf Rð Þ = η Rð Þ3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4β2 β−1ð Þ2sin4 πR

L
+ cos2

πR
L

r
; ð25Þ

Cf Rð Þ = η Rð Þ4f 1−2 β2 +
1
3

� �
sin2 πR

L
+

4
3
β3sin4 πR

L

	 
2

+ β2sin2 2πR
L

1−2β2

3
sin2 πR

L

 !2g1
2
;

ð26Þ

β =
kfL
2π

− kfL
2π

	 

; ð27Þ

and

Φf
1 Rð Þ = arctan

2β 1−β sin2 πR
L

� �
tan

πR
L

1−2β2sin2 πR
L

−2βπR
L

+ πð Þ; 28

Φf
2 Rð Þ = arctan

β sin
2πR
L

1−2β2

3
sin2 πR

L

 !

1−2 β2 +
1
3

� �
sin2 πR

L
+

4
3
β3sin4 πR

L

−2βπR
L

+ πð Þ:

29

In Φ1
f (R), +π means that we need to add π when cos

πR
L

1−ð
2β2sin2 πR

L Þb0; similarly for Φ2
f (R), +π means that we need to add π

when 1−2 β2 +
1
3

� �
sin2 πR

L
+

4
3
β3sin4 πR

L
b 0:

Now we can consider the influence of such effect in RKKY
interaction by comparing J f Rð Þ + J f L−Rð Þ with J Rð Þ + J L−Rð Þ.
From Eq. (18), we can find that the expression of J Rð Þ + J L−Rð Þ
is similar to Eq. (24), we just need to change Af(R), Bf(R), Φ1

f (R), and
Φ2

f (R) to A(R), B(R), Φ1(R), and Φ2(R), where

B Rð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ6 Rð Þ + 2ξ3 Rð Þcos 2βπ + 1

q
; ð30Þ

C Rð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ8 Rð Þ−2ξ4 Rð Þcos 2βπ + 1

q
; ð31Þ

Φ1 Rð Þ = −arctan
ξ3 Rð Þsin 2βπ

1 + ξ3 Rð Þcos 2βπ + πð Þ; ð32Þ

Φ2 Rð Þ = arctan
ξ4 Rð Þsin 2βπ

1−ξ4 Rð Þcos 2βπ + πð Þ; ð33Þ

ξ Rð Þ = R
L−R

: ð34Þ

It is clear that when R/L→0, we have Bf(R)→B(R),Φ1
f (R)→Φ1(R),

and C f(R)→C(R), Φ2
f (R)→Φ2(R), so we do not need to consider such

effect. But when R is comparable to L, the situation is very different. To
illustrate, we plot Bf(R)/B(R) in Fig. 5. From this figure, we find that
when Rb0.2L, the difference between Bf(R) and B(R) is very small and
we can ignore it, but when RN0.2L, the difference becomes very big
and cannot be ignored.

4. Conclusion

In summary, we get a general form of electron density inside
metallic films. When x/L is very small, this form is reduced to the form
for a half-infinite film. In contrast, when x is comparable to L, this
general form becomes significantly different from the one for half

1233L. Mao, B. Wu / Surface Science 605 (2011) 1230–1235
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infinite model. We are able to quantify this difference and find it
oscillating with film thickness with a period of λf/2. This difference
can be regarded as the result of interaction between two sets of
Friedel oscillations originated from the two sides of the film. For
Pb (111) films, the oscillations of interaction can be very robust
because of the special value of d0: λf. We find similar QSE in RKKY
interactions inside films: when R is perpendicular to film surfaces, the
RKKY interaction between two localized magnetic moments in a film
should satisfy Eq. (24), and such effect cannot be ignored when
RN0.2L.
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Appendix A

When x∼L, with expansions

1
L + 2δn

=
1
L
−2δn

L2
+ … ðA:1Þ

δn = δ 0ð Þ +
n
N
δ 1ð Þ +

n
N

� �2
δ 2ð Þ + …; ðA:2Þ

we find that

n xð Þ− 1
2πL

∑
N

n=1
k2f −k2n
� �

= δn1 xð Þ + δn2 xð Þ + δn3 xð Þ + O
δn3

L

� �
;

ðA:3Þ

where

δn1 xð Þ = − π
2L3

∑
N

n=1
N + βð Þ2−n2

h i
cos2 nθ + ϕnð Þ;

δn2 xð Þ = 2π
L4

∑
N

n=1
δN N + βð Þ2−δnn

2
h i

cos2 nθ + ϕnð Þ;

δn3 xð Þ = −6π
L5

∑
N

n=1
δ2N N + βð Þ2−δ2nn

2
h i

cos2 nθ + ϕnð Þ;

ϕn =
nπ δn−δ 0ð Þ� �

L + 2δn
1−

2 x + δ 0ð Þ� �
L + 2δ 0ð Þ

2
4

3
5;

θ =
π x + δ 0ð Þ� �
L + 2δ 0ð Þ :

ðA:4Þ

The summations in the above can be worked out explicitly. First of
all, we have

f θ;ϕið Þ = ∑
N

i=1
cos 2iθ + 2ϕið Þ

= −1
2
−1

2
cot θ sin 2ϕ1 +

sin2 Nθ +
θ
2

+ ϕN

� �
2sinθ

− ϕN−ϕN−1ð Þ sin 2 Nθ + ϕNð Þ
2sin2θ

+ O
1
L2

� �
;

ðA:5Þ

where f(θ, ϕi) means f(θ, ϕ1, ϕ2,…, ϕN). Inserting Eq. (A.1) in
the expression of ϕN and ϕN−1, we can find that ϕ1∼O(1/L2), and
ϕN−ϕN−1∼O(1/L). Other summations can be expressed in terms of
f(θ, ϕi) and they are

∑
N

i=1
i2kcos 2iθ + 2ϕið Þ = −1ð Þk

22k

∂2k

∂θ2k
f θ;ϕið Þ;

∑
N

i=1
i2k−1cos 2iθ + 2ϕið Þ = −1ð Þk

22k

∂2k−1

∂θ2k−1
lim
η→0

∂
∂η f θ;ϕi + ηð Þ;

ðA:6Þ

where k is a positive integer. With these relations, we can compute
δn1(x), δn2(x), and δn3(x) and arrive at

n xð Þ = nc + n0f3 1−βð Þη2 xð Þ
2kfxð Þ2 cos 2 kf−βk1ð Þx−γN½ �

+
3βη2 xð Þ
2kfxð Þ2 cos 2 kf + 1−βð Þk1ð Þx−γN + 1

� �g;

ðA:7Þ

where

η xð Þ =
πx
L

sin
πx
L

; k1 =
π

L + 2δN
: ðA:8Þ

Note that for the computation leading to the above express we
have ignored all terms of the order O(1/L2+ i). Because of this, some
complicated computations need not be taken. For example, since we
can prove

∑
N

i=1
incos 2iθ + 2ϕið Þ∼O Ln

� �
; ðA:9Þ

we can ignore δn3(x), which is of the order O(1/L3).
The constant term nc in n(x) can be determined by the

electroneutrality in the middle of the film, which requires v(x)−v
(L/2)∼O(1/Li) (v(x) is the electric potential). At x=2L/3, we have

v
2L
3

� �
−v

L
2

� �
=

πL2

18
nc−n0ð Þ + 4π∫

2
3
L

L
2

∫
x

L
2

n x′ð Þ−nc½ �dx′dx∼O
1
Li

� �
:

ðA:10Þ

Because

∫
2
3
L

L
2

∫
x

L
2

n x′
� �

−nc
� �

dx′dx ∼O
1
L2

� �
; ðA:11Þ

we find

nc−n0 ∼O
1

L2 + i

� �
: ðA:12Þ

So, replacing nc with n0 and omitting some high order terms we
can get the electron density expressed in Eq. (11).

Fig. 5. Bf/B as a function of R/L for different values of β=0(1), 0.2(0.8), 0.3(0.7), 0.5.

1234 L. Mao, B. Wu / Surface Science 605 (2011) 1230–1235



Author's personal copy

To consider the influence of the approximate amplitudes of wave
functions, we just need to expand 1/(L+ ln) with 1/L− ln/L2+…and
express ln (similarly to δn) as

ln = l 0ð Þ +
n
N
l 1ð Þ +

n
N

� �2
l 2ð Þ + :::: ðA:13Þ

With these expansions, we find that replacing L with L+ ln in the
amplitude of wave function just adds O(1/L3) terms in the final
expression of electron density.
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