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Atomic quantum corrals for Bose-Einstein condensates
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We consider the dynamics of Bose-Einstein condensates in a corral-like potential. Compared to the electronic
quantum corrals, the atomic quantum corrals have the advantages of allowing direct and convenient observation
of the wave dynamics, together with adjustable interaction strength. Our numerical study shows that these
advantages not only allow exploration of the rich dynamical structures in the density distribution but also make
the corrals useful in many other aspects. In particular, the corrals for atoms can be arranged into a stadium shape
for the experimental visualization of quantum chaos, which has been elusive with electronic quantum corrals.
The density correlation is used to describe quantitatively the dynamical quantum chaos. Furthermore, we find that
the interatomic interaction can greatly enhance the dynamical quantum chaos, for example, inducing a chaotic
behavior even in circle-shaped corrals.
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I. INTRODUCTION

Quantum corrals were first demonstrated by arranging iron
adatoms into a ring on a copper surface [1,2]. Several years
later, an optical analogy to the electronic quantum corrals was
proposed theoretically and realized in experiment by a skillful
arrangement of nanoscale pillars [3,4]. However, in both of
the quantum corrals, only static wave properties were studied
experimentally. Since the density image was obtained by se-
quential scanning over a period of time, the experimental study
of wave dynamics in these corrals is difficult if not impossible.

In this paper, we study the dynamics of atomic quantum cor-
rals for Bose-Einstein condensates (BECs). Since the density
distribution of a BEC can be imaged snapshot by snapshot with
a charge-coupled device (CCD), the atomic quantum corrals
offer a great advantage over their electronic and optical coun-
terparts, namely, the possible experimental study of the wave
dynamics inside the corrals. Our numerical simulation shows
that rich dynamical structures of a condensate can arise in the
quantum corrals due to reflection and interference. Moreover,
with a great deal of experimental control over the condensates
[5,6], it is possible to study unique quantum behavior, which
is unimaginable for electronic or optical quantum corrals. For
example, the dynamic evolution of a quantized vortex confined
inside quantum corrals can be studied.

Of particular importance, the atomic quantum corrals
proposed here can be used as a laboratory to study quantum
chaos. Since the first creation of quantum corrals, building
stadium-shaped quantum corrals has been pursued to visualize
experimentally the “scar” states, a signature of quantum
chaos [7]. The stadium-shaped quantum corrals were built;
however, the visualization of quantum chaos has remained
elusive because the quantum corrals are too “leaky” for
electrons [7]. Our atomic quantum corrals are very flexible
and can be made to minimize the “leakage” so that they
can be used to explore quantum chaos experimentally. As
an example, we demonstrate with numerical simulation that
with atomic quantum corrals of stadium shape, one should be
able to visualize experimentally the quantum chaotic behavior

predicted in Ref. [8]. We also show how the interference
between two BECs is destroyed by chaos. In addition, our study
finds that interaction can enhance quantum chaotic dynamics,
inducing quantum chaos for circle-shaped quantum corrals.

The paper is organized as follows. In Sec. II, we consider
the wave-packet dynamics for a BEC in a corral-like potential.
In particular, the vortex evolution in a corral-like potential
is studied. In Sec. III, we study dynamical quantum chaos
for a BEC in stadium-shaped quantum corrals. In Sec. IV,
the interaction effect on dynamical quantum chaos is studied.
In particular, the density correlation is used to describe the
interaction effect in the dynamical quantum chaos. A brief
summary and discussion are given in the last section.

II. WAVE-PACKET DYNAMICS IN A
CORRAL-LIKE POTENTIAL

We propose here a scheme to create quantum corrals for a
BEC as illustrated in Fig. 1. An opaque sheet with a ring of
holes is placed between a lens and a blue-detuned laser beam
to create a corral-like repulsive potential for the condensate.
The lens is to focus and adjust the sizes of the “corrals.” The
identical holes in the opaque sheet have a radius around 50 µm
or larger, which is large enough so that the diffraction of the
laser beam can be ignored. This setup is similar to the one used
to create a rotating quasi-two-dimensional (quasi-2D) optical
lattice by a mask with a set of holes [9] and a random potential
[10] for BECs. One may also create this kind of quantum corral
by using a spatial light modulator or microlens array [11].

We consider the situation that the condensate is tightly
confined in the z direction so that the degree of freedom in
the z direction is frozen out [12–16]. In this situation, we
integrate out the axial degree of freedom and focus on the
two-dimensional dynamics of the BEC, which is described by
the following Gross-Pitaevskii (GP) equation [12]:
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FIG. 1. (Color online) Scheme to build quantum corrals for a
Bose-Einstein condensate (see text).

where � is a normalized wave function. This equation has been
made dimensionless with the length unit L0 and the energy unit
E0 = h̄2/2mL2

0. The time unit is then T0 = h̄/E0. Voc is the
corral-like potential, and Vht = mω2

⊥L2
0(x2 + y2)/2E0, with

ω⊥ being the harmonic frequency in the x and y directions.
In the numerical calculations, we choose m as the mass of the
sodium atom and use L0 = 5 µm, which means T0 = 18.3 ms.

The ith Gaussian potential Vi(x,y,z) created by a focused
laser beam propagating along the z direction has the following
form:

Vi(x,y,z) ∼ P

πσ 2(z)
e−[(x−xi )2+(y−yi )2]/σ 2(z), (2)

where P is the total power of a laser beam and

σ (z) = σ0

√
1 + z2

/
z2
R, (3)

with the Rayleigh length zR = 2πσ 2
0 /λ. In the following

calculations, σ0 = 5 µm. For a focused laser beam with
wavelength λ = 500 nm, we have zR = 314 µm. In this
situation, along the z direction, the condensate feels almost
the same corral-like potential in the x-y plane.

To show clearly the fundamental properties of the atomic
quantum corrals, we calculate numerically the evolution of the
condensate confined in circle-shaped quantum corrals,

Voc =
M∑

j=1

γ e−[(x−xj )2+(y−yj )2]/σ 2
, (4)

with {xj ,yj } distributed uniformly along a circle of radius
R. In our calculation, the parameters are γ = 20, M = 20,
R = 10, σ = 1, g2D = 50, and ω⊥ = 70 × 2π . We first get
the ground-state wave function by using the widely used
imaginary time propagation (ITP) method. Then the evolution
of the condensate after the harmonic trap is suddenly switched
off is followed numerically with the GP equation (1). In
Fig. 2(a), both the initial density distribution |�|2 and the
corral-like potential are shown. Illustrated in Figs. 2(b)–2(f)
is the evolution of |�|2 after the sudden switching off of
the harmonic trap. The rich and colorful structures in |�|2
originate from the following two physical mechanisms:

(i) After switching off the harmonic trap and with the
expansion of the condensate, the condensate will be reflected

FIG. 2. (Color online) Density distribution of a condensate in a
corral-like potential at different times: (a) t = 0, (b) t = 1, (c) t = 2,
(d) t = 3, (e) t = 4, and (f) t = 5. The coordinates are in units of L0.
In (a), the corral-like potential is shown.

by the corral-like potential. The expanding and reflected
condensates will overlap and lead to clear interference patterns.
In Figs. 2(c)–2(f), a series of ring-shaped interference fringes
are clearly shown.

(ii) In Figs. 2(c) and 2(d), the density distribution shows
sunflower-like structure. This sunflower-like structure is due
to the discrete characteristic of the corral-like potential. For the
expanding condensate, the corral-like potential can be regarded
as discrete scattering sources arranged along a circle. This
discrete characteristic imposes important modulation on the
interference fringes. As a result, the ring-shaped interference
fringe develops a series of small peaks. In Figs. 2(c) and 2(d),
the number of small peaks distributed along an interference
fringe is found to be exactly 20, the number of corrals.

For the parameters of Fig. 2, the interaction plays a
negligible role because just before the collision between the
condensate and the quantum corrals, most of the interaction
energy has already transformed into kinetic energy: Just before
the collision between the condensate and the corrals, the size of
the condensate is about 50 times larger than the initial size. In
this work, except for the parameters used in Sec. IV, where the
interaction effect will be stressed, the interaction effect will not
play a dominant role in the dynamic process of the condensate.

We now consider the evolution of a quantized vortex in
the circle-shaped quantum corrals. In our calculations, we use
γ = 20, M = 20, R = 10, σ = 1, g2D = 50, and ω⊥ = 70 ×
2π . The initial vortex state in the presence of both the corral-
like and harmonic trapping potentials is obtained numerically
from the ITP method with a trial wave function, which has the
general form f (

√
x2 + y2)e±iθ [6]. The plus and minus signs

in e±iθ denote the rotational directions of the vortex.
The evolution of the vortex in the corrals after the harmonic

trap is switched off is shown in Fig. 3. The evolution is
obtained numerically from the GP equation (1). Similarly, the
expanding and reflected condensates will overlap and lead
to clear interference patterns. These interference patterns are
clearly seen in Figs. 3(a)–3(f), where Figs. 3(a)–3(c) show
the evolution for the case of eiθ and Figs. 3(d)–3(f) give the
evolution for the case of e−iθ .
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FIG. 3. (Color online) Density distributions of a quantized vortex
in a corral-like potential at different times. The left column shows
a vortex rotating counterclockwise at (a) t = 2.5, (b) t = 3.8, and
(c) t = 6.3. The right column shows a vortex rotating clockwise at
(d) t = 2.5, (e) t = 3.8, and (f) t = 6.3. The coordinates are in units
of L0. The dashed circles mark the position of the circular corrals.

In addition to the sunflower-like structure induced by the
discrete characteristic of the corral-like potential, one more
interesting feature has emerged due to the presence of the
vortex. At t = 2.5T0, as shown in Figs. 3(a) and 3(d), the two
different vortices have almost identical density distributions
even though their sunflower-like structure indicates that the
two BECs have already felt the corral potential. The rotational
difference between the two BECs shows up only when the
“main peak” of the condensate hits the corral potential, as
shown in Figs. 3(b) and 3(c) and 3(e) and 3(f). This is due to
the unique property of the velocity field for a quantized vortex,
where the center of the vortex has larger velocity. In Figs.
3(c) and 3(f), a series of flyerlike peaks distributed along the
circumference of the outmost circle distinguishes obviously
two vortices with different rotational directions. This feature
may be applied to detect the rotational direction of a vortex.

It is still an open problem to experimentally investigate
the behavior of a quantized vortex in electronic quantum
corrals. For an atomic condensate, all the rich dynamics of
the vortex shown here can be readily observed experimentally
because a vortex in a BEC can be generated with mature
technologies [17]

III. QUANTUM CHAOS FOR A BEC IN A
CORRAL-LIKE POTENTIAL

We now turn to consider the dynamics of a BEC confined
in stadium-shaped quantum corrals, as shown in Fig. 4(a).
The stadium billiard is a typical system used to study both
classical and quantum chaos [8]. The energy-level distribution
was proposed in Ref. [18] to reveal the quantum chaos
for a BEC. The discrete chaotic state, chaotic shock wave,
and soliton-chaos transition were studied recently [19]. Most
recently, the scars in the steady-state density profiles of

FIG. 4. (Color online) Density distributions of a condensate in
a stadium-shaped potential at different times: (a) t = 0, (b) t = 0.5,
(c) t = 1, (d) t = 1.5, (e) t = 3, and (f) t = 6. Here the time t is in
units of Ts = 2(R + d)/v, which is the time needed for a classical
particle to propagate along the stadium axis. The coordinates are in
units of L0. In (a), the stadium-shaped confinement potential is also
shown.

parametrically driven condensates were proposed to study
quantum chaos [20].

There was a series of pioneering experiments exploring
chaos with cold atoms [21–24]. However, most of these
experiments, in particular, the ones with optical billiards
[22–24], were focused on classical chaos. For example, in
Ref. [23], a classic chaotic motion was observed with a
stadium billiard having a hole by observing a fast and purely
exponential decay for the fraction of surviving atoms.

Here we focus on the dynamic manifestation of quantum
chaos with a BEC. The stadium potential can be described by
Voc with {xi,yi} uniformly distributing along the circumference
of the stadium, as shown in Fig. 4(a). In our numerical compu-
tation, the parameters that we choose for the stadium-shaped
quantum corrals are M = 50, σ = 1, γ = 500, R = 10, g2D =
50, and d = 30π/19. The ground-state wave function is
calculated for the condensate confined in the harmonic trap
with ω⊥ = 87.5π and the stadium-shaped quantum corrals.
This condensate is then given an initial velocity of v. After
switching off the harmonic trap, we study numerically the
evolution of this moving condensate in the stadium-shaped
quantum corrals. For v = 2.7 mm/s, Figs. 4(a)–4(f) show a
series of snapshots for the condensate evolution. The regular
density distribution is destroyed after a small number of
reflections. This is in stark contrast to the dynamics of a
moving BEC in circle-shaped quantum corrals, which stays
regular even after long-time evolution, as indicated by the clear
interference patterns in Fig. 5. This significant difference can
be used in an experiment to identify the dynamical quantum
chaos for stadium-shaped quantum corrals. The parameters for
Fig. 5 are M = 40, σ = 1, γ = 500, R = 10, ω⊥ = 87.5π ,
g2D = 50, and v = 2.7 mm/s.

This quantum chaotic behavior was first revealed in Ref. [8]
for a free particle in a continuous stadium billiard. In their
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FIG. 5. (Color online) Density distributions of a condensate in
a circle-shaped potential at different times: (a) t = 0, (b) t = 0.5,
(c) t = 1, (d) t = 1.5, (e) t = 3, and (f) t = 6. Here the time t is in
units of Tc = 2R/v. The coordinates are in units of L0. In (a), the
circle-shaped confinement potential is also shown.

work, Tomsovic and Heller showed that the chaotic wave
dynamics shown in Fig. 4 can be regarded as the supposition
of millions of classical trajectories. The random-looking
sequence in Fig. 4 is just a reflection of the chaotic classical
trajectories.

As mentioned, it has remained elusive to visualize ex-
perimentally the quantum chaotic behavior in the electronic
quantum corrals despite a great deal of effort [7]. The main
reason is that the quantum corrals are too leaky for electrons.
Our numerical studies here show that the BEC system provides
a very good chance to experimentally visualize the quantum
chaos because (i) the stadium-shaped corrals can be built
with the scheme shown in Fig. 1 and 2 the BEC can gain
a velocity with the method used for the experimental studies
of quantum reflection [25]. As the length unit is 5 µm in
Figs. 2–5, an imaging resolution below 5 µm is necessary to
reveal the structure in these figures. Fortunately, absorption
imaging with resolution lower than 5 µm has been achieved
[26]. Classical chaotic behavior has been studied experimen-
tally with nondegenerate cold atomic gases [22–24]. Quantum
chaos has been visualized with classical wave systems, such
as sound and microwave [27]. An eventual implementation of
our scheme will be an experimental realization of quantum
chaos with a coherent matter wave, marking an important step
forward in the experimental studies of chaos.

When comparing our results to the microwave systems
[27,28], we see that the propagation of the microwave under
the stadium boundary condition renders less-complex scar
distribution. This obvious difference between microwave
and atomic condensate originates from different dispersive
relations. The dispersive relation of a microwave is εp = pc,
whereas it is εp = p2/2m for an atomic wave packet. These
different dispersive relations imply that there is no wave-packet
diffusion for a microwave in free space, while there is diffusion
for an atomic wave packet. This diffusion effect of the atom
makes the interference phenomenon more complex and thus
leads to more-complex scar distribution.

Besides visualizing the known quantum chaotic behavior,
we can explore more on quantum chaos with BECs in

FIG. 6. (Color online) The evolution of two initially coherently
separated condensates in stadium-shaped (left column) and circle-
shaped potentials (right column). Each figure in the left and right
columns is 30 × 40 and 30 × 30, with coordinate units of L0,
respectively. Here the time unit is Ts = 2(R + d)/v and Tc = 2R/v

for the left and right columns, respectively.

stadium-shaped corrals. It is well known that the interference
between two condensates can show the phase coherence of
the condensates [29]. It is therefore interesting to see how
quantum chaos would affect the interference. For this purpose,
we study two coherently separated BECs in stadium-shaped
corrals. Another significance of this study lies in that a
classical particle can never be regarded as two coherently
separated particles. We show in Fig. 6 the evolution of
two initially coherently separated condensates [29] for both
stadium-shaped and circle-shaped corrals. Figures 6(a1)–6(a6)
give the evolution of two coherently separated Gaussian wave
packets with the same boundary condition in Fig. 4. The initial
width and distance are

√
2/5 and 4, respectively. For short-time

evolution, the interference between two condensates is seen
in Fig. 6(a2). After long-time evolution, the interference is
destroyed by quantum chaos, as seen in Figs. 6(a4)–6(a6). As
a comparison, we have also computed the evolution of these
two BECs in circle-shaped corrals. The results are shown in
Figs. 6(b1)–(b6), where the interference between two con-
densates is partly preserved, even for long-time evolution.
In the inset of Fig. 6(b5), the forklike structure implies the
information of two initially coherently separated condensates.
These results demonstrate that quantum chaos can cause
the loss of phase memory (or the breakdown of the phase
coherence) between two condensates.

For the parameters in the numerical calculations in this
section, most of the interaction energy has been transferred
into kinetic energy. In this situation, we expect the quadrupole
mode would not play an important role. In addition, the
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stadium-shaped quantum corrals are symmetric about the x

axis and y axis, which will lead to a suppression of the
quadrupole mode.

IV. THE ROLE OF INTERATOMIC INTERACTIONS ON
THE DYNAMICAL QUANTUM CHAOS

An important advantage of a BEC in dilute gases is
that the coupling constant can be controlled with Feshbach
resonance [30] or by manipulating the trapping frequency
perpendicular to the quantum corrals [12]. Compared with
the microwave experiment in stadium-shaped quantum corrals
[27], the controllability of the coupling constant for degenerate
quantum gases gives us a chance to consider also the role of
interatomic interactions on dynamical quantum chaos.

The effect of atomic collisions for thermal atoms in optical
billiards has been discussed by Milner et al [22], who described
well the results using the classical picture. For a BEC, the
interaction is well described by the nonlinear term in the GP
equation. This makes it possible to reveal and quantify the
interaction effect on quantum chaos

To reveal the role of interatomic interactions on the quantum
chaos, we consider a density correlation function defined as

Cn =
∫

n(t = 0)n(t) dV. (5)

In Ref. [8], Tomsovic and Heller used the correlation function
of the wave function, 〈�(t = 0)|�(t)〉. However, the wave
function cannot be measured experimentally. To take advan-
tage of the fact that one can get the density distribution of a
BEC in a single measurement with a CCD, we use the evolution
of the density correlation Cn to study the role of interatomic
interaction.

For the parameters of Fig. 4, before the collision between
the matter wave and the corrals, most of the interaction
energy has been transferred into kinetic energy. To show more
clearly the role of interatomic interaction for stadium-shaped
quantum corrals, we consider a different trapping frequency
ω⊥ = 87.5π/10 (with other parameters being the same as in
previous calculations). The purpose of this harmonic trap is
to make the size of the condensate comparable to that of
the stadium-shaped quantum corrals, so that the interaction
energy plays a more important role in the whole process.
The inset in Fig. 7 shows the initial density distribution and
stadium-shaped quantum corrals for g2D = 0. For g2D = 50,
the interaction energy is about four times the kinetic energy
before releasing the harmonic trap, and our calculations show
that the interaction energy is comparable to the kinetic energy
in the whole dynamic process.

With the parameter ω⊥ = 87.5π/10, we show in Fig. 7
the evolution of the density correlation function for different
coupling constants. There are two obvious interaction effects:
(i) It is shown clearly that, with increasing coupling constant,
the density correlation function increases at long-time evolu-
tion. This means that increasing the coupling constants has an
effect of enhancing the effect of uniform distribution of the
matter wave. (ii) We also notice that the oscillation beyond
t = 1 attenuates more quickly for larger coupling constants.
These two interaction effects show that nonlinear interaction
can enhance the dynamical quantum chaos.

FIG. 7. (Color online) The evolution of the density correlation
function for stadium-shaped quantum corrals with different coupling
constants. The time t is in units of Ts . The inset displays the initial
density distribution and stadium-shaped quantum corrals for g2D = 0.

For circle-shaped quantum corrals with the same param-
eters in Fig. 5, we show in Fig. 8 the density distribution
at t = 6Tc for different coupling constants. We see clearly
that the density becomes more chaotic as the interaction gets
stronger. This indicates that the interaction between atoms can
induce quantum chaos at the mean-field level. This interaction-
induced chaos is also apparent in the correlation function Cn.
Shown in Fig. 9 is the evolution of the density correlation
for different coupling constants. As in Fig. 7, we see that the
oscillation for long-time evolution attenuates with increasing
coupling constants. Without interatomic interaction, the evo-
lution of the density correlation function displays a type of
revival oscillation for t > 3. For g2D = 150 and 500, however,
this sort of revival oscillation is not found theoretically.
This provides a way to show directly the interaction-induced
quantum chaos for the integrable boundary condition.

FIG. 8. (Color online) Density distribution at t = 6Tc for circle-
shaped quantum corrals with different coupling constants: (a) g2D =
0, (b) g2D = 50, (c) g2D = 150, and (d) g2D = 500. The length unit
is L0.
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FIG. 9. (Color online) The evolution of the density correlation
for circle-shaped quantum corrals with different coupling constants.
The time is in units of Tc.

Quantum chaos due to the nonintegrable boundary condi-
tion and nonlinear interaction can be understood in the frame
of the path integral method,

�(x,y,t) =
∫

K(x,y,t ; x1,y1,t1)�(x1,y1,t1) dx1dy1, (6)

where K is a propagator. This propagator is related to the
Lagrangian of all possible classical trajectories. So, roughly
speaking, for the evolution of a wave packet in quantum
corrals, the propagator can be regarded as the supposition
of millions of classical trajectories. When the corresponding
classical system is integrable, e.g., in circle-shaped corrals,
the classical trajectories are regular and lead to a regular wave
pattern. When the classical system is chaotic, for example, in
stadium-shaped corrals, the classical motion is “random” and
chaotic, which, in turn, produces a chaotic-looking density
image. Since the interaction in classical mechanics almost

always leads to chaotic motion, this implies that interaction
can induce quantum chaos, as shown in Fig. 8.

V. SUMMARY AND DISCUSSION

In summary, we have studied an atomic analogy to
electronic quantum corrals. A scheme is proposed to study
the dynamic evolution of a Bose-Einstein condensate confined
in a corral-like potential. In particular, with these atomic
corrals, it is now promising to study experimentally the
dynamic quantum chaotic behavior [8]. The atomic quantum
corrals proposed here can also be applied to study other
quantum gases, such as molecular Bose-Einstein condensates
[31], degenerate Fermi gases [32], ultracold Fermi gases
in the unitarity limit [33], and Bardeen-Cooper-Schrieffer
superfluids [34] in the corral-like potential. The different
descriptions of the order parameter, quantum statistics, and
evolution equation [35] mean that there should be very rich
phenomena for discovery.

In the present work, the calculations are carried out
with the two-dimensional GP equation. In an experiment,
the perpendicular direction may distort the structure in the
density distribution shown in our calculations as the density
distribution measured by the CCD is an integration along the
perpendicular direction. This may be overcome by the method
of an optically pumped light sheet, where the absorption of the
probe light is restricted to a thin horizontal slice [36].
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[13] Z. Hadzibabic, P. Krüger, M. Cheneau, B. Battelier, and
J. Dalibard, Nature (London) 441, 1118 (2006); S. Stock,
Z. Hadzibabic, B. Battelier, M. Cheneau, and J. Dalibard, Phys.
Rev. Lett. 95, 190403 (2005); P. Kruger, Z. Hadzibabic, and
J. Dalibard, ibid. 99, 040402 (2007).

[14] Z. Hadzibabic and J. Dalibard, e-print arXiv:0912.1490.
[15] C.-L. Hung, X. Zhang, N. Gemelke, and C. Chin, Phys. Rev. A.

78, 011604 (2008).
[16] I. Bloch, J. Dalibard, and W. Zwerger, Rev. Mod. Phys. 80, 885

(2008).
[17] A. L. Fetter, Rev. Mod. Phys. 81, 647 (2009); M. R. Matthews,

B. P. Anderson, P. C. Haljan, D. S. Hall, C. E. Wieman, and

053634-6

http://dx.doi.org/10.1038/363524a0
http://dx.doi.org/10.1038/363524a0
http://dx.doi.org/10.1126/science.262.5131.218
http://dx.doi.org/10.1103/RevModPhys.75.933
http://dx.doi.org/10.1103/PhysRevLett.86.4950
http://dx.doi.org/10.1103/PhysRevLett.86.4950
http://dx.doi.org/10.1103/PhysRevLett.88.097402
http://dx.doi.org/10.1038/416205a
http://dx.doi.org/10.1016/j.physrep.2006.03.003
http://dx.doi.org/10.1016/j.physrep.2006.03.003
http://dx.doi.org/10.1103/RevModPhys.71.463
http://dx.doi.org/10.1103/RevModPhys.73.307
http://dx.doi.org/10.1103/RevModPhys.73.307
http://dx.doi.org/10.1038/369464a0
http://dx.doi.org/10.1016/0167-2789(94)00254-N
http://dx.doi.org/10.1016/0039-6028(96)00552-3
http://dx.doi.org/10.1103/PhysRevLett.67.664
http://dx.doi.org/10.1103/PhysRevE.47.282
http://dx.doi.org/10.1103/PhysRevLett.97.240402
http://dx.doi.org/10.1103/PhysRevLett.97.240402
http://dx.doi.org/10.1088/1367-2630/8/8/165
http://dx.doi.org/10.1088/1367-2630/11/4/043030
http://dx.doi.org/10.1103/PhysRevLett.104.113001
http://dx.doi.org/10.1103/PhysRevLett.104.113001
http://dx.doi.org/10.1103/PhysRevA.73.031402
http://dx.doi.org/10.1103/PhysRevLett.84.2551
http://dx.doi.org/10.1103/PhysRevLett.84.2551
http://dx.doi.org/10.1038/nature04851
http://dx.doi.org/10.1103/PhysRevLett.95.190403
http://dx.doi.org/10.1103/PhysRevLett.95.190403
http://dx.doi.org/10.1103/PhysRevLett.99.040402
http://arXiv.org/abs/arXiv:0912.1490
http://dx.doi.org/10.1103/PhysRevA.78.011604
http://dx.doi.org/10.1103/PhysRevA.78.011604
http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1103/RevModPhys.81.647


ATOMIC QUANTUM CORRALS FOR BOSE-EINSTEIN . . . PHYSICAL REVIEW A 82, 053634 (2010)

E. A. Cornell, Phys. Rev. Lett. 83, 2498 (1999); K. W. Madison,
F. Chevy, W. Wohlleben, and J. Dalibard, ibid. 84, 806 (2000);
J. R. Abo-Shaeer, C. Raman, J. M. Vogels, and W. Ketterle,
Science 292, 476 (2001); P. C. Haljan, I. Coddington,
P. Engels, and E. A. Cornell, Phys. Rev. Lett. 87, 210403 (2001);
M. F. Andersen, C. Ryu, P. Clade, V. Natarajan, A. Vaziri,
K. Helmerson, and W. D. Phillips, ibid. 97, 170406 (2006);
D. R. Scherer, C. N. Weiler, T. W. Neely, and B. P. Anderson,
ibid. 98, 110402 (2007); E. A. L. Henn, J. A. Seman, G. Roati,
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[27] H. J. Stöckmann, Quantum Chaos: An Introduction (Cambridge
University, Cambridge, 1999).
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