
This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

This content was downloaded by: wubiao

IP Address: 107.178.200.223

This content was downloaded on 11/12/2014 at 02:41

Please note that terms and conditions apply.

Hierarchical theory of quantum adiabatic evolution

View the table of contents for this issue, or go to the journal homepage for more

2014 New J. Phys. 16 123024

(http://iopscience.iop.org/1367-2630/16/12/123024)

Home Search Collections Journals About Contact us My IOPscience

iopscience.iop.org/page/terms
http://iopscience.iop.org/1367-2630/16/12
http://iopscience.iop.org/1367-2630
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


Hierarchical theory of quantum adiabatic evolution

Qi Zhang1,2, Jiangbin Gong3,4 and Biao Wu1,5,6
1Wilczek Quantum Center and College of Science, Zhejiang University of Technology,
Hangzhou 310014, Peopleʼs Republic of China
2 International Joint Research Laboratory for Quantum Functional Materials of Henan Province
and School of Physics and Engineering Zhengzhou University, Henan 450001, Peopleʼs
Republic of China
3Department of Physics and Centre for Computational Science and Engineering, National
University of Singapore, 117542, Singapore
4NUS Graduate School for Integrative Sciences and Engineering, Singapore 117597, Singapore
5 International Center for Quantum Materials, School of Physics, Peking University, Beijing
100871, Peopleʼs Republic of China
6 Collaborative Innovation Center of Quantum Matter, Beijing 100871, Peopleʼs Republic of
China
E-mail: wubiao@pku.edu.cn

Received 13 June 2014, revised 15 October 2014
Accepted for publication 13 November 2014
Published 10 December 2014

New Journal of Physics 16 (2014) 123024

doi:10.1088/1367-2630/16/12/123024

Abstract
Quantum adiabatic evolution is a dynamical evolution of a quantum system
under slow external driving. According to the quantum adiabatic theorem, no
transitions occur between nondegenerate instantaneous energy eigenstates in
such a dynamical evolution. However, this is true only when the driving rate is
infinitesimally small. For a small nonzero driving rate, there are generally small
transition probabilities between the energy eigenstates. We develop a classical
mechanics framework to address the small deviations from the quantum adia-
batic theorem order by order. A hierarchy of Hamiltonians is constructed
iteratively with the zeroth-order Hamiltonian being determined by the original
system Hamiltonian. The kth-order deviations are governed by a kth-order
Hamiltonian, which depends on the time derivatives of the adiabatic parameters
up to the kth-order. Two simple examples, the Landau–Zener model and a spin-
1/2 particle in a rotating magnetic field, are used to illustrate our hierarchical
theory. Our analysis also exposes a deep, previously unknown connection
between classical adiabatic theory and quantum adiabatic theory.
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1. Introduction

Quantum evolution under external adiabatic driving has been of fundamental interests to
physicists. Born and Fock proved the quantum adiabatic theorem shortly after the discovery of
the Schrödinger equation [1]. This theorem states that no transition occurs between
instantaneous energy eigenstates in a system under adiabatic driving. However, this is only
true when the external driving is infinitesimally slow. With a slow but finite external driving,
there is generally small probability of transition between energy levels. There has been a great
deal of effort to address this small deviation from the quantum adiabatic theorem [2–13].
Throughout the many studies on this issue, a controversy on the validity of the quantum
adiabatic theorem arises [14–25]. With the success of the quantum adiabatic algorithm in
quantum computing, this issue has also become important in a practical sense [26, 27]. It is
hence important to make an effort towards a better assessment and control of the errors in
quantum adiabatic computing.

In this work we present a theory to address the deviation from the quantum adiabatic
theorem. Based on a classical mechanics framework, we construct iteratively a hierarchy of
Hamiltonians with the zeroth-order Hamiltonian being determined by the original Hamiltonian.
The deviations of the kth-order are the adiabatic invariants of the kth-order Hamiltonian while
the adiabaticity of the kth-order Hamiltonian is determined by the time derivatives of the
external parameters (denoted R) up to the kth-order. Within this theoretical framework, the
deviations from the quantum adiabatic theorem can be computed to arbitrary order iteratively.
The theory breaks down at the kth-order when the kth-order time derivative of the external
parameters becomes relatively large. We use two simple examples, the Landau–Zener model
and the spin-1/2 under a rotating magnetic field, to illustrate our hierarchical theory.

Our hierarchical theory establishes an intuitive picture for quantum adiabatic evolution. At
the zeroth-order, the adiabatic evolution is a smooth curve of instantaneous eigenstates in the
projective Hilbert space where the overall phase is removed. We call the smooth curve adiabatic
trajectory (see figure 1). At the first order, this adiabatic trajectory is shifted by a small amount
that is proportional to the first-order time derivative of external parameters ( =R R t˙ d d ). At the
second order, the adiabatic trajectory is shifted again by a small amount that is proportional to
Ṙ2 or other possible second-order small parameters, such as R̈. Predicting and understanding
such type of net shift of a certain order from perfect adiabatic following is one noteworthy
feature of our theory. A schematic picture is presented in figure 1. Depending on the explicit
time dependence of R, an actual time evolving state may or may not have small oscillations
around a trajectory that is systematically shifted from the idealized adiabatic trajectory.

Technically we take advantage of two facts to develop our theory. First, we use the
superposition principle, which allows us to focus on the adiabatic evolution of each individual
energy eigenstate. Second, we use the classical Hamiltonian formulation of the Schrödinger
equation [28–30]. In this formalism, an energy eigenstate is mapped into an elliptic fixed point
in the corresponding projective Hilbert space. Note that this classical formulation is purely
mathematical and is not the traditional semiclassical limit → 0. Our classical mechanics
framework exposes a deep, previously unknown connection between classical adiabatic theory
and the quantum adiabatic theory. The relation between classical adiabatic theory and the
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quantum adiabatic theory was explored in [30] but not as deeply as in this work. In particular, a
high-order deviation in the quantum adiabatic following still has a classical mechanics structure
and may be still understood using classical adiabatic theory.

2. Classical Hamiltonian formulation of the Schrödinger equation

We consider a quantum system described by the Hamiltonian H Rˆ ( )0 , where =R R t( )
represents time-dependent parameters in an adiabatic protocol. As normally assumed for
quantum adiabatic evolutions [1], H Rˆ ( )0 has a discrete nondegenerate spectrum during the
entire control protocol. Further, the rate of change in R is small as compared with the transition
frequencies of the system. Deviations from the quantum adiabatic theorem are expected so long
as the protocol is not executed in the mathematical limit →Ṙ 0. The aim of this work is to
develop a general and systematic framework to quantitatively describe such deviations.

Though our consideration can be extended to cases with a Hilbert space of infinite
dimensions, for convenience we assume H Rˆ ( )0 lives in a finite n-dimensional Hilbert space.
H Rˆ ( )0 can thus be expressed as a R-dependent n×n Hermitian matrix. We find it mathematically
more convenient to use the classical Hamiltonian formulation for the Schrödinger equation [28–
30]. We express the quantum state with an n-component wavefunction ψ〉 = …c c c| ( , , , )n

T
1 2

and define −n 1 pairs of canonical variables

= − =+ +p c c q carg( ) arg( ), , (1)i i i i1 1 1
2

with = … −i n1, 2, , 1. By construction, the Schrödinger equation then yields the following
Hamiltonʼs equations of motion,

= −
∂

∂
=

∂
∂

( ) ( )p

t

H R

q

q

t

H R

p

d

d
,

d

d
, (2)i

i

i

i

0 0

Figure 1. The adiabatic trajectories of different orders in the projective Hilbert space.
The black line is for the zeroth-order, the red line for the first-order, and the green line
for the second-order. The difference between the zeroth-order and the first-order
trajectories is proportional to Ṙ while the difference between the first-order and the
second-order trajectories is proportional to Ṙ2. The possible small oscillations around
the adiabatic trajectories of the first and second orders are omitted for clarity.
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where the classical Hamiltonian H R( )0 is obtained from the quantum Hamiltonian H Rˆ ( )0 as

ψ ψ=H R H R( ) ˆ ( ) . (3)0 0

As the overall phase is removed, the phase space in this classical formalism is just the projective
Hilbert space. This alternative formalism of the Schrödinger equation will allow us to exploit
powerful and familiar tools in classical mechanics in our analysis. The overall phase of the
wavefunction, or equivalently carg( )1 , is removed in equation (2) [28–30].

It is particularly interesting to look at eigenstates. In the original Schrödinger equation
picture, an energy eigenstate of H Rˆ ( )0 at a fixed R simply develops a trivial overall phase. Since
the overall phase is discarded in our formalism, such an eigenstate evolution is mapped to a
fixed point in the classical phase space of H R( )0 . The issue of the adiabatic following with the
instantaneous energy eigenstates of H R tˆ [ ( )]0 now becomes the issue of the adiabatic following
with the instantaneous fixed points of H R t[ ( )]0 .

In principle, the time evolution emanating from an arbitrary initial state as a superposition
of different energy eigenstates can be considered. However, the linearity of the original
Schrödinger equation indicates that it suffices to study initial states that are energy eigenstates
of H Rˆ [ (0)]0 at t = 0. As such, in our classical formalism we only need to consider those initial
conditions that are fixed points in the phase space.

One final technical comment is in order. The mapping from the wavefunction components
ci to phase space variables p q( , )i i [see equation (1)] becomes ambiguous when any one of the
wavefunction component ci becomes zero. Fortunately, this ambiguity can be easily overcome
by adopting a different representation to re-express the wavefunction. For example, c1 in
equation (1) is used to remove the overall wavefunction phase. If =c 01 , one can always select
another nonzero ci to carry out a similar mapping.

3. First order deviations

As the generalization to arbitrary dimensions is straightforward, we consider a quantum system
with a two-dimensional Hilbert space for the rest of the paper. With n = 2 the Hamiltonʼs
equations of motion in equation (2) only involve one pair of canonical variables q1 and p1. The
phase space is hence also two-dimensional. For clarity we drop the subscript 1 hereafter. A R-
dependent fixed point in the phase space is denoted as p R q R[ ¯ ( ), ¯ ( )]. There are two fixed points
corresponding to two energy eigenstates of H Rˆ ( )0 .

According to the quantum adiabatic theorem, under a sufficiently slow protocol =R R t( ),
the dynamics emanating from an energy eigenstate will follow the instantaneous energy
eigenstates. With the removal of the overall phase, this dynamics is completely described by the
smooth curve of instantaneous energy eigenstates in the projective Hilbert space. We shall call
it adiabatic trajectory (see figure 1). However, in a realistic protocol where R(t) changes slowly
with a nonzero rate, there should be a deviation from this picture of perfect adiabatic following.

There have been studies on the small deviations from what the adiabatic theorem predicts.
These were done in special classical systems and the small deviations were found to pollute the
Hannayʼs angle [31–33]. Recently, the first-order deviation was studied in nonlinear quantum
adiabatic evolutions [34, 35], where the result was used successfully to predict a new kind of
geometric phase beyond the traditional Berry phase. As their focus was on the global effects of
the deviations, detailed dynamics of the deviation was not considered. Our work conducts a
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systematic study of the quantum adiabatic evolution and reveals its hierarchical structure. Our
results can be easily generalized to classical systems and nonlinear quantum systems.

With possible deviations from the instantaneous fixed points q R p R[ ¯ ( ), ¯ ( )], the actual
adiabatic trajectory in the phase space can be written as

δ δ= + = +p t p R t p q t q R t q( ) ¯ [ ( )] , ( ) ¯ [ ( )] , (4)

with δ δp q( , ) being time-dependent deviations from the ideal adiabatic trajectory p R q R[ ¯ ( ), ¯ ( )].
This section is mainly to develop a theory to understand the behavior of δ δp q( , ) to the first
order of Ṙ.

As a preparation we first consider the case when R is fixed. Using Hamiltonʼs equations of
motion and Taylor expanding ∂

∂
H R

p

( )0 and ∂
∂

H R

q

( )0 to the first order of δ δp q( , ), we have

Γ
δ
δ

=

⎛

⎝
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⎟⎟
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⎠⎟

p

t
q

t

p
q

d

d
d

d

, (5)0

where
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−
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∂ ∂

∂
∂ ∂ = =

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

H

q p

H

q q

H

p p
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(6)

p p q q

0

2
0

2
0

2
0

2
0

¯, ¯

is an R-dependent matrix obtained from the second-order derivatives of H R( )0 . The terms with
first-order derivatives of H R( )0 do not appear on the right-hand side of equation (5) simply
because q R p R[ ¯ ( ), ¯ ( )] is a fixed point. All higher-order terms are neglected here.

We now consider the dynamics of δ δq p( , ) in the control protocol where =R R t( ) changes
slowly with time. In this case, we have

δ

δ

=
∂

∂
+

=
∂

∂
+

( )

( )

p

t

p R

R
R

p

t

q

t

q R

R
R

q

t

d

d

¯ ˙ d

d

d

d

¯ ˙ d

d
. (7)

Equation (5) consequently becomes

δ

δ
Γ

δ
δ

Γ= −

∂
∂
∂
∂

−

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

⎡

⎣

⎢
⎢
⎢
⎢

⎛
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⎞
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⎛

⎝

⎜
⎜
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⎞

⎠

⎟
⎟
⎟⎟

⎤

⎦

⎥
⎥
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⎥

d p

dt
q

t

R
p
q

R

p

R
q

R

R
d

d

( ) ( )

¯

¯
˙ . (8)0 0

1

Two remarks are necessary for this equation of δ δp q( , ). First, because it is already
assumed that throughout the protocol =R R t( ) the studied energy eigenstates never become
degenerate, the corresponding fixed points in the phase space do not vanish or collide. It is
therefore legitimate to always associate the deviations with one fixed point so long as δ δp q( , ) is
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small. Second, it can be shown that the determinant Γ| |0 does not vanish with nondegenerate
energy eigenstates. Γ−

0
1 in equation (8) hence exists for all R.

Remarkably, equation (8) possesses a canonical structure. The variables δ δp q( , ) are a
canonical pair and equation (8) can be derived from the following Hamiltonian

δ δ δ δ δ

δ

=
∂
∂

− +
∂
∂ ∂

− −

+
∂
∂

−

⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟

( ) ( ) ( )( )

( )

H p q R R
H

q
q B

H

q p
q B p A

H

p
p A

, ; , ˙ 1
2

1
2

, (9)

p q p q

p q

1

2
0

2
¯, ¯

1
2

2
0

¯, ¯

1 1

2
0

2
¯, ¯

1
2

where =A A R R( , ˙)1 1 and =B B R R( , ˙)1 1 are defined as

Γ=

∂
∂
∂
∂

−⎛
⎝⎜

⎞
⎠⎟

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

A

B
R

p

R
q

R

R( )

¯

¯
˙ . (10)

1

1
0

1

This expression was previously obtained by Fu and Liu [34, 35]. It is clear that the first-order
Hamiltonian (9) describes harmonic oscillations around the central point A B( , )1 1 .

The first-order Hamiltonian H1 generating the dynamics of δ δp q( , ) depends upon two
parameters R(t) and R t˙ ( ). We assume that R t˙ ( ) also changes slowly with time. In this case, the
dynamics of δ δp q( , ) becomes the adiabatic evolution of H1 and can be understood with the
help of the classical adiabatic theorem. We define the action for δ δp q( , ) as

∮π
δ δ=I p d q

1
2

· ( ). (11)1

This action is the adiabatic invariant possessed by H1 [36]. A B( , )1 1 is the fixed point of H1 with
=I 01 . The dynamics of δ δp q( , ) can be viewed as a spiral motion along the adiabatic trajectory

specified by fixed point A B( , )1 1 . The amplitude of the spiral oscillations is determined by the
action I1. With this analysis, it becomes clear that when both R(t) and R t˙ ( ) change slowly with
time A B( , )1 1 describes an adiabatic trajectory shifted from the ideal trajectory of fixed point
p R q R[ ¯ ( ), ¯ ( )] as shown in figure 1.

We now consider two typical cases. In the first case, Ṙ is increased slowly from zero. In
this case, as A1 and B1 are zero initially, the action I1 is zero and the adiabatic evolution to the
first order will follow exactly the adiabatic trajectory specified by A B( , )1 1 . This is illustrated in
figure 2(a). In the second case, the external driving rate Ṙ is finite and small at the beginning.
This means that A B( , )1 1 is not zero initially and the action I1 has a finite and small value. In this
second case, the adiabatic evolution will become a spiral motion around the trajectory of
A B( , )1 1 as shown in figure 2(b). This analysis of the second case in fact implies that infrequent
sudden but small jump of Ṙ will not break down the adiabaticity of the evolution. Note that the
smallness of the jump in R t˙ ( ) is implicitly guaranteed by the slow change of R(t). We mention it
explicitly in our discussion just for clarity.

Our first-order adiabatic theory shows that a small quantum transition to other energy
eigenstates always occurs with probability determined by Ṙ. The probability is zero only in
special cases where the coefficients in equation (10) vanish.
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Our first-order theory offers a deep insight into the generic subtlety of how the adiabatic
following breaks down. Let us consider a situation where R t˙ ( ) is small but changes with a great
rate, i.e. R t¨ ( ) is large. In this case, the dynamics governed by H1 is not adiabatic; I1 is not an
adiabatic invariant and can not stay small for a long time. When the evolution is long enough,
the dynamical evolution of the first-order deviations δ δp q( , ) will no longer be bounded: the
small deviations δ δp q( , ) can accumulate and eventually be amplified to the zeroth-order level.
This breakdown due to the largeness of R t¨ ( ) clearly depends on the detail of the protocol R(t)
and the Hamiltonian; general conclusions will be difficult to reach.

We note that our theory can be naturally extended to a Hilbert space of larger dimension
>n 2, where the matrix Γ0 becomes − × −n n2( 1) 2( 1) dimension and the first-order

Hamiltonian has −n( 1) pairs of canonical variables.

4. Second-order deviations

In the previous section we have found that the first-order correction δ δp q( , ) evolves according
to a first-order Hamiltonian H1. It is natural to wonder whether we can find a similar
Hamiltonian for the second-order deviations. We find that if the system follows the first-order
adiabatic trajectory (see figure 2(a)), we can indeed find such a Hamiltonian. We write

Figure 2. Adiabatic evolutions at first and second orders. The black line is the zeroth-
order adiabatic trajectory, the red line the first-order adiabatic trajectory, and the dark
green line is the second-order adiabatic trajectory. (a) The evolution follows the first-
order adiabatic trajectory when the adiabatic manipulation is gradually launched
(continuous increasing of Ṙ from zero); (b) it becomes a spiral oscillatory motion when
the process is started with a finite Ṙ. (c) The state follows the second-order adiabatic
trajectory when R̈ is changed slowly from zero; (d) it becomes a spiral-like motion when
R̈ is started with a finite value.
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δ δ= + + = + +p p A p q q B q¯ , ¯ . (12)1
2

1
2

After substituting it into H0 and with straightforward calculation, we obtain the second-order
Hamiltonian

δ δ δ

δ δ

δ

=
∂
∂ ∂

−

+
∂
∂ ∂

− −

+
∂
∂ ∂

−

+ +

+ +

+ +

⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
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, (13)
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1 1

where

Γ Γ δΓ=
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∂
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∂
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−− −⎛
⎝⎜

⎞
⎠⎟

⎡

⎣

⎢
⎢
⎢
⎢

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

⎤

⎦

⎥
⎥
⎥
⎥

⎛
⎝⎜

⎞
⎠⎟

A

B

A

R
B

R

R

A

R
B

R

R
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B
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¨ 1
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2

2
0

1

1

1

1

1
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Here δΓ is defined as

δΓ Γ Γ= ∂
∂

+ ∂
∂

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
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B (15)
p q p q¯ , ¯

1
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1

with

Γ ≡
−

∂
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−
∂
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∂
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∂
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⎛

⎝

⎜
⎜
⎜
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⎞

⎠

⎟
⎟
⎟
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H

q q

H

p p

H

p q

. (16)

2
0

2
0

2
0

2
0

The detailed derivation of this second-order Hamiltonian (13) can be found in appendix A along
with some subtlety involved in the derivation.

The second-order Hamiltonian H2 has a similar structure as H1 and describes a generalized
harmonic oscillator. The significant difference is that H2 depends on three parameters R R R( , ˙, ¨)
while H1 depends on only two parameters R R( , ˙). In the following, we conduct a similar
analysis for H2 as for H1. We focus on the case where R̈, along with R R, ˙ , changes slowly with
time. In this case, the dynamics of the second-order deviation δ δp q( , )2 2 as governed by H2 is
adiabatic. We define the action for δ δp q( , )2 2 as

∮π
δ δ= ( )I p d q

1
2

· , (17)2
2 2

which is the adiabatic invariant possessed by H2 [36]. A B( , )2 2 is the fixed point of H2 with
=I 02 . The dynamics of δ δp q( , )2 2 can be viewed as a spiral motion along the adiabatic

trajectory specified by fixed point A B( , )2 2 . The amplitude of the spiral oscillations is
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determined by the action I2. It is clear from this analysis that A B( , )2 2 describes an adiabatic
trajectory shifted from the first-order one that is specified by + +p A q B[ ¯ , ¯ ]1 1 (see figure 1).

We again consider two typical cases. (i) When both Ṙ and R̈ are started continuously from
zero, I2 is zero and the dynamics of δ δp q( , )2 2 follows exactly A B( , )2 2 . This means that the
state follows exactly the adiabatic trajectory deviating from original instantaneous eigenstate by

+ +A A B B( , )1 2 1 2 (see figure 2(c)). (ii) When the system starts with a finite R̈, I2 is nonzero
and the system undergoes a spiral motion around A B( , )2 2 (see figure 2(d)). The amplitude of
the spiral motion is determined by I2.

We can continue this procedure and construct a kth-order Hamiltonian for the kth-order
deviation. The result and the detailed derivation can be found in appendix B. A general feature
is that the kth-order Hamiltonian will depend on +k 1 parameters, ⋯R R R R t, ˙, ¨, , d dk k, and
the adiabaticity of its dynamics is controlled by these parameters. We note that a kth-order
Hamiltonian can be constructed only when the dynamics of the deviations of order −k( 1)
follows the −k( 1) th-order adiabatic trajectory (the scenarios illustrated in figures 2(a), (c)).

In brief, we have developed a hierarchical theory for quantum adiabatic evolution. In this
theory, a hierarchy of Hamiltonians can be constructed: the kth-order deviation from quantum
adiabatic theorem is governed by a kth-order Hamiltonian. This theory not only offers an
explicit formula to compute the deviations of various orders but also presents an intuitive
insight into the intricacy of adiabatic evolution. To illustrate the latter, we use the second-order
Hamiltonian H R R R( , ˙, ¨)2 as an example. We assume that R R, ˙ is small while R̈ is large. In this
case the dynamics of the second-order deviation δ δp q( , )2 2 governed by H2 is not adiabatic. As
a result, the second-order deviation δ δp q( , )2 2 can grow, reach the first-order level, and continue
to grow even bigger. The evolution of the first-order deviations is adiabatic due to the smallness
of R and Ṙ. However, this conclusion is only true when the deviation is small. If the second-
order deviation grows so large that the deviation is no longer small, the adiabticity at the first-
order level is then broken. Eventually, the growth starting from the second-order level can even
break down the zeroth-order adiabaticity. This example suggests that the adiabatic evolution
can be maintained for an arbitrarily long time only when all orders of time derivative of R are
small. However, such growth of a high-order deviation to an appreciable quantity at a low-order
level can take a long time scale beyond our practical interest. As the exact time scale needed for
this growth depends on the detail of the control protocol R(t), it can only be examined case by
case. However, there are cases where a breakdown of adiabaticity at a higher order may not pass
on to a lower level and then cause the breakdown of adiabaticity at the lower level.

In figure 3, we illustrate a specific case in which, for ≠A B( , ) (0, 0)1 1 , the spiral-like
motions are in tangency with the trajectory of the instantaneous eigenstate on both the starting
and ending times of the adiabatic process. If the duration of the adiabatic process is precisely
chosen such that the final state is just on the instantaneous eigenstate, then the adiabaticity is
accidently restored, a situation different from the true adiabaticity maintained throughout the
whole process. Because the adiabatic curve itself is derived within the first-order
approximation, to the second-order accuracy the final state is not exactly on the instantaneous
eigenstate (see point 1 in figure 3). On the other hand, if the duration T is chosen such that the
final state is on point 2 (see figure 3), then the final state will deviate from the instantaneous
eigenstate with a first-order deviation. For a higher-order case, e.g. =A B( , ) (0, 0)1 1 but

≠A B( , ) (0, 0)2 2 at the starting and ending times of the protocol, we will have an analogous
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situation. These qualitative insights are fully consistent with early results in [37] based on a
different approach.

We can now also see the possibility of higher-order deviations not accumulating to a
lower-order deviation from the perfect adiabatic following. Suppose we divide the whole
protocol into many segments. If, at the end of each segment, the state rotates (with kth-order
spiral-like motion when =A B( , ) (0, 0)i i for = … −i k1, 2, 1 but ≠A B( , ) (0, 0)k k ) back to
the instantaneous eigenstate, then this kth-order deviation is unable to accumulate to the −k( 1)
th order. By contrast, if the state at the ending times of many segments always rotates away, say,
to the farthest point from the instantaneous eigenstate, then the deviation can become larger and
larger and eventually its value may accumulate to reach the −k( 1)th-order.

For the hierarchical expressions of adiabatic errors detailed in appendix B, we have
assumed that the higher time derivatives of R possess a higher-order (and hence smaller)
magnitude, e.g. the term proportional to R t(d d )m m n belongs to the group of terms of m n·
-order. This grouping scheme, mainly for convenience, is intuitive and can be reasonable in a
vast variety of adiabatic protocols. However, this order grouping scheme may be problematic in
some protocols of R(t). Consider, for example, the protocol ϵ=R tsin ( ) with a small ϵ, then all
the higher-order derivatives will be small, and ϵ∝R t(d d )m m n mn is indeed a m n· -order term.
However, for the protocol ϵ=R tsin ( ) with a small ϵ, all orders of time derivatives of R, e.g.

…R R R t˙, ¨, , d dk k, are of the same order of magnitude. As such, for this situation a term
containing ϵ∝R t(d d )m m n n is of the n-order. On one hand, this is fully consistent with early
observations that sometimes terms associated with higher-order derivatives of R can be
important [37, 38]. On the other hand, it is clear now that the many terms arising from our
hierarchical theory may not automatically be an expansion cast in terms of their orders of
magnitude. To analyze the details we still need to make use of the explicit R(t) to assess the
actual importance (or weightage) of the many different terms emerging from our theory. In any
case, we have learned from our classical mechanics framework that the dynamics of quantum
adiabatic following can be digested in terms of adiabatic following of various orders occurring
in parallel.

Figure 3. Illustration of initial and final states due to spiral-like motion, where the initial
state is exactly the instantaneous eigenstate and, at the initial and final times, the spiral-
like motions are all in tangency with the trajectory of the instantaneous eigenstate. The
mean first-order deviations A B( , )1 1 are not zero on the starting and ending points of the
adiabatic process and the area enclosed by orbit, or I1, determined by A B( , )1 1 on the
starting point is conserved according to the first-order adiabatic theory. The orbits here
in the first-order approximation permit second-order errors.
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5. Two examples

We now use two simple systems to illustrate our hierarchical theory. One is a spin-1/2 particle
in an external rotating magnetic field; the other is the Landau–Zener model. They are chosen
because they are either exactly solvable or their numerical solutions can be found with great
accuracy. In this way, there will be no ambiguity in checking the validity of our hierarchical
theory. In this section, we always assume = 1.

5.1. Spin-1/2 particle under a rotating field

In the hierarchical theory, the first-order deviation and its dynamics is of the most importance.
In this subsection, we employ the simple model of a spin-1/2 particle in a rotating magnetic
field to illustrate the first-order adiabatic theory. The Hamiltonian for a spin-1/2 particle in an
external rotating field is

α
α

=
−⎛

⎝⎜
⎞
⎠⎟H

L i

L i
ˆ 1

2

0 exp( )
exp( ) 0

, (18)0

where α t( ) changes slowly with time for a rotating field. We use ψ〉 = c c| ( , )T
1 2 , where c1 and

c2 are complex, to denote the quantum state of this spin-1/2 particle. We turn to the classical
formulation by introducing a pair of conjugate variables, = −p c carg( ) arg( )2 1 and =q c| |2

2.
The corresponding classical Hamiltonian is

ψ ψ α= = − −H H L q q pˆ cos ( ). (19)0 0
2

The classical Hamiltonian in equation (19) has two elliptic fixed points, namely,
α= =q p( ¯ 1 2, ¯ ) and α π= = +q p( ¯ 1 2, ¯ ), corresponding respectively to the two eigenstates

of equation (18). We focus on the adiabatic following of the fixed point α= =q p¯ 1 2, ¯ as α
(rotating field) changes slowly. The conventional adiabatic theorem states that the actual state
will accurately follow the instantaneous state α= =q p( ¯ 1 2, ¯ ).

On top of the conventional adiabatic theorem, there are first-order corrections. To that end
we now derive the effective first-order Hamiltonian H1. According to equations (9), (10) and
(19), one finds for fixed point α= =q p( 1 2, ),

δ α δ= − − +⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥H

L
q

L
p

2
2

˙
2

1
2

( ) . (20)1

2
2

Interestingly, for this example, H1 happens to be independent of the adiabatic parameter α. The
first-order fixed point is located at =A 01 , α=B L˙ 21 . In the following we consider three
different control protocols α t( ) with α =(0) 0 and the initial state emanating exactly from the
fixed point α= =q p(0) 1 2, (0) .

(i) Let us first consider the simplest protocol in which α ω= t with ω being constant. At
t = 0, the initial state is = =q p1 2, 0 while the first-order fixed point is at

ω= =A B L( 0, 2 )1 1 . So, the state starts off the first-order fixed point and the first-order
action is

ω=I
L4

. (21)1

2

2
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According to our theory, the first-order deviation will undergo a spiral motion, similar to what is
depicted in figure 2(b), with its amplitude determined by I1.

The validity of our theory can be checked by directly integrating the Schrödinger equation
governed by (18). This solution can be found exactly. With the omission of higher orders, the
solution can be written as

ψ

ω

ω=
− −

+ − ω + ω

⎛

⎝

⎜
⎜
⎜ ⎡

⎣⎢
⎤
⎦⎥

⎞

⎠

⎟
⎟
⎟⎡⎣ ⎤⎦

L
Lt

L
Lt

1

2

1
2

[1 cos ( )]

1
2

(1 cos ( )) e
. (22)

t Lti sin( )
L

This solution is plotted in figure 4 by mapping ψ〉| to (p,q) and thus to δ δp q( , ). In this figure,
we clearly see oscillations around the fixed point ω= =A B L( 0, 2 )1 1 , consistent with our first-
order theory. As shown in the inset of this figure, our direct computation also confirms that the
first-order action I1 is a constant. We point out that this is equivalent to a system under the
following control protocol

α α ω= < = >t t t0 for 0 ; for 0 . (23)

That is, there can be a small sudden jump in α̇ at t = 0. Analytically, the first-order deviation can
be readily computed from the solution (22)

δ ω

δ ω

= − =

= − = −

p p p
L

Lt

q q q
L

Lt

¯ sin ( ),

¯
2

(1 cos ( )), (24)

which is indeed consistent with the first-order Hamiltonian dynamics predicted by H1 in
equation (20).

According to the mapping (1) between δp and δq and wavefunction, we can write down
the adiabatic error during the whole adiabatic process in terms of the quantum state,

Figure 4. The first-order solution of a spin-1/2 particle in a slowly rotating magnetic
field. The dots are δq computed from the analytical solution to the first-order
equation (22). The solid line is B1 of the first-order fixed point. The inset shows the first-
order action I1 computed from the analytical solution equation (22). ω = −10 5.
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ψ ψ δ δ α α= − ∣ + + = ∝( )p q p p q q
L

Err 1 ( ¯ , ¯) ¯ , ¯
˙

4
˙ , (25)

2 2

2
2

which is consistent with an earlier result based on exact calculations [39].
(ii) In the second protocol, the speed α̇ increases gradually from zero. To be specific, we

choose α = at1

2
2 with = × −a 7.96 10 12. For this protocol, the first-order fixed point is

= =A B( 0, 0)1 1 at t = 0. Therefore, according to our first-order theory, the action =I 01 and
the dynamics of the first-order deviation δ δp q( , ) follows exactly the first-order fixed point

= =A B at L( 0, 2 )1 1 . We have numerically solved the Hamiltonʼs equations of motion
governed by equation (19) for this second protocol. The numerical results for δ δp q( , ) and I1 are
shown in figure 5 and an excellent agreement with our first-order theory is found.

(iii) In the third protocol, we change the sign of α̇ frequently while keeping α| ˙ | small. This
is to ensure that the second-order time derivative α̈ can be quite large. We use this protocol to
illustrate an insight offered by our hierarchical theory: a high-order time derivative of R can also
lead to the breakdown of adiabaticity. For this spin-1/2 system, the smallness of α| ˙ | does not
guarantee the accuracy of the quantum adiabatic theorem. When α̈ is large, then the first-order
dynamics governed by H1 is no longer adiabatic, and the accumulation of δ δp q( , ) will
eventually lead to the breakdown of adiabaticity at the zeroth orders. We have solved
numerically the equations of motion governed by equation (19). The results are plotted in
figure 6, where we see that δq can indeed grow and destroy the adiabaticity. The solid line seen
in the middle of the pattern shown in figure 6 demonstrates that the action I0 is no longer a
constant.

5.2. Hierarchy of adiabatic corrections in the Landau–Zener model

In this subsection, we consider a different model, the Landau–Zener (LZ) model, and use it to
demonstrate higher-order deviations. The LZ Hamiltonian can be written as

Figure 5. Numerical results for the first-order correction δ δp q( , ) obtained from the
Hamiltonʼs equation of motion governed by (19). The control protocol is α = at1

2
2 with

= × −a 7.96 10 12. The dots and circles are numerical results while the solid lines are for
the first-order fixed point = =A B at L( 0, 2 )1 1 . The inset shows the numerically
computed I1.
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= −( )H
z x
x z

ˆ 1
2

, (26)0
LZ

where the coupling term >x 0 is a constant whereas z changes slowly and linearly from −Z0 to
Z0,

= − →z Vt t Z V Z V, : . (27)0 0

Similarly, we define = ϕc c e| | i
1 1 c1, = ϕc c e| | i

2 2 c2, ϕ ϕ= −p c c2 1
, and =q c| |2

2, and obtain the
classical Hamiltonian (drop a constant):

ψ ψ= = − −H H x q q p zqˆ cos ( ) . (28)0 0
LZ 2

This classical Hamiltonian has two fixed points at = = −
+

p q( ¯ 0, ¯ )z

x z

1

2 2 2 2
and

π= = +
+

p q( ¯ , ¯ )z

x z

1

2 2 2 2
. Without loss of generality, we focus on the fixed point

π= = +
+

p q( ¯ , ¯ )z

x z

1

2 2 2 2
, which corresponds to the eigenstate with the lower energy.

According to the quantum adiabatic theorem, i.e. zeroth-order theory, when the initial state is

the ground state −⎡⎣ ⎤⎦cos ( ), sin ( )
x Z x Z Tarctan ( )

2

arctan ( )

2
0 0 at = −z Z0 the system will follow the

instantaneous eigenstate and ultimately reach −⎡⎣ ⎤⎦sin ( ), cos ( )
x Z x Z Tarctan ( )

2

arctan ( )

2
0 0 at =z Z .0

In what follows, we will compute explicitly the first-order deviation and the second-order
deviation, and discuss some general properties of the higher-order deviations.

According to equations (9) and (28), the first-order Hamiltonian H1 reads

δ
δ

= + + +
−

+
+⎛

⎝⎜
⎞
⎠⎟

( )
H x z

z

x
q x

p

x z
1 ( )

1
4

. (29)

V

x z
1

2 2
2

2
2 2

2

2 2

2 2

The fixed point for the first-order deviation δ δp q( , ) (or the first-order deviation from the zeroth-
order adiabatic trajectory) is

Figure 6. Numerical solution of δq and ∮=
π

I p q· d0
1

2
with Hamiltonʼs equation of

motion governed by (19). For the control protocol, we have α = −| ˙ | 10 5. The sign of α̇
oscillates with the frequency ν = 1.
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= +
⎛
⎝⎜

⎞
⎠⎟

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

A

B

V

x z
0

. (30)
1

1
2 2

The results for the second-order deviation δ δp q( , )2 2 can be computed similarly. The
second-order Hamiltonian is

δ

δ δ
δ

= + + −
+

−
+

−
+

+
+

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

( )

( )
( )

H x z
z

x
q

x zV

x z

zV

x z
q

x zV

x z
p x

p

x z

1
5

4

5

4

1
4

. (31)

2
2 2

2

2
2

2 2

2 2

7 2
2

2 2
2

2 2

2 2

7 2
2 2

2 2

2 2

The fixed point (or, the deviation from the first-order adiabatic trajectory) is

=
+

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟( )

A
B

x zV

x z

0

5

4

;
2

2

2 2

2 2 7 2

We consider the limit → ∞Z0 . At this limit, we have = = = =A B A B 01 1 2 2 at = ∞z| | .
This means that the deviations of the first-order and the second-order are zero both at the
beginning and at the end of the evolution. The higher-order deviations can also be computed
with the formula in appendix B. There is no need to write them down here. We only want to
mention, for all these higher-order deviations, we also have

→ → → ∞A B z0; 0, as . (32)k k

This indicates that the LZ tunneling rate at → ∞Z0 tends to zero to all orders of the small
driving rate V based on our hierarchy theory. This is perfectly consistent with the standard

rigorous result for the LZ tunneling rate − πexp ( )x

V

2

[40, 41], where any term in the Taylor

expansion of − πexp ( )x

V

2

with respect to V is zero. This result is in sharp contrast to the previous
case in the last subsection, where the leading term of the deviation from an ideal adiabatic
behavior is proportional to ω2.

6. Summary

Our hierarchical theory is summarized in table 1. We have found that the small deviations from
the quantum adiabatic theorem can be analyzed in a hierarchical order (not necessarily in terms
of the order of magnitude of each term): the deviations of kth-order are governed by a kth-order
Hamiltonian which depends on …R R R t, ˙, , d dk k. When there is a large change in R td dk k, the
dynamics governed by the kth-order Hamiltonian is no longer adiabatic and the effect of this
nonadiabaticity may iteratively accumulate to affect the lower-order adiabaticity.

In many practical systems for a limited time scale, it is sufficient to consider the first-order
deviation, neglecting all higher-orders. In figure 7, we have depicted schematically three typical
scenarios of the first-order deviations. It is clear that the first-order deviations can be
manipulated by designing R(t) and R t˙ ( ). This can be very useful to control the nonadiabatic
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error in quantum adiabatic computation [42, 43]. We plan to pursue this issue in the near future.
Moreover, by substituting the hierarchically corrected wavefunction into the original
Schrödinger equation, we may study possible corrections to the overall phase of the time-
evolving quantum state [34, 35].

Our approach can be directly applied to classical adiabatic processes and nonlinear
quantum adiabatic evolution on the mean-field level [44–49]. For example, it is of considerable
interest to apply our findings to assist in the control of adiabatic processes in both classical and
quantum systems [50–52].
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Figure 7. Schematics of different scenarios for the first-order deviation from the zeroth-
order adiabatic trajectory. (a) For the case of a spin-1/2 particle under a rotating field
considered in section 5.1, the first-order deviation from the zeroth-order adiabatic
trajectory is a constant. (b) In the case of a LZ process considered in section 5.2, the
average deviation in either the initial stage or the final stage approaches zero, but it can
be appreciable at the intermediate stage. (c) The first-order deviations δ δp q( , ) can be
manipulated by designing the time dependence of R(t) and R t˙ ( ).

Table 1. Hierarchical adiabatic following at different orders, with the associated adia-
batic Hamiltonians determined by various derivatives of the adiabatic parameter R(t).

Order Deviations Associated Hamiltonian Adiabatic Parameters

0 ψ〉p q¯ , ¯, | ¯ H H( ˆ )0 0 R

1 δ δp q, H1 R R, ˙

2 δ δp q,2 2 H2 R R R, ˙, ¨

3 δ δp q,3 3 H3 R R R R t, ˙, ¨, d d3 3

⋮ ⋮ ⋮ ⋮

k δ δp q,k k Hk …R R R R t, ˙, ¨, , d dk k
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Appendix A. Detailed derivations for the second-order theory

The premise of dealing with the second-order deviation is that the state is around the first-order
fixed point. This allows us to express δ δp q( , ) as the following,

δ δ δ δ= + = +p p A q q B; , (A.1)2
1

2
1

where δ p2 and δ q2 describe the actual dynamics of δ δp q( , ) on top of their time-averaged values
A B( , )1 1 .

Note that in deriving H1 we have only kept the first-order term when expanding the force

field − ∂
∂

∂
∂

⎡⎣ ⎤⎦,
H R

q

H R

p

( ) ( )0 0 . This is adequate for the first-order theory. When considering the second-

order deviation, we should also keep the second-order terms in the expansion. Specifically,
substituting equation (A.1) into equations (5) and (8), keeping the second-order expansion
terms

δ δ∂
∂

+ ∂
∂

′ ′ =
−∂

∂
∂
∂

⎛
⎝⎜

⎞
⎠⎟p

p
q

q
H H

H

q

H

p

1
2

or , (A.2)
2

0 0
0 0

and neglecting terms containing δ p[ ]2 2 or δ q[ ]2 2 (which are fourth-order), one finds (employing
equation (10))

δ

δ
δΓ Γ δΓ

δ
δ

= + + −

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

( )

p

t

q

t

A

B
p

q

A

t
B

t

d

d

d

d

1
2

d

d
d

d

, (A.3)

2

2

1

1
0

2

2

1

1

where δΓ is defined in equation (15) as the state under consideration shifts from p q( ¯ , ¯) to
+ +p A q B( ¯ , ¯ )1 1 .
Rearranging some terms on the right-hand side of equation (A.3), we arrive at

δ

δ
Γ δΓ

δ
δ

Γ δΓ Γ δΓ δΓ= + − + + +− −

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

⎧
⎨
⎪⎪

⎩
⎪⎪

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

⎛
⎝⎜

⎞
⎠⎟

⎫
⎬
⎪⎪

⎭
⎪⎪

( ) ( ) ( )

p

t

q

t

p

q

A

t
B

t

A
B

d

d

d

d

d

d
d

d

1
2

. (A.4)

2

2
0

2

2
0

1

1

1
0

1 1

1

The fixed-point solution for δ p2 and δ q2 can be found from equation (A.4); it is

Γ Γ δΓ=

∂
∂
∂
∂

+

∂
∂
∂
∂

−− −⎛
⎝⎜

⎞
⎠⎟

⎡

⎣

⎢
⎢
⎢
⎢

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

⎤

⎦

⎥
⎥
⎥
⎥

⎛
⎝⎜

⎞
⎠⎟

A
B

R

A

R
B

R

R

A

V
B

V

R
A
B

( ) ˙ ¨ 1
2

, (A.5)
2

2
0

1

1

1

1

1
0

1 1

1

where the time derivatives of the adiabatic parameter R, Ṙ and R̈, are assumed to be in the first-
order and second-order of magnitude, respectively. All higher-order terms, such as those terms
of the order of Ṙ j with ⩾j 3, are neglected. Under this treatment, it is now seen that, in terms of
their time-averaged values, a more accurate prediction of δ δp q( , ) is given
by + +A A B B( , )1 2 1 2 . Note that A2 and B2 are evidently proportional to and R R( ¨) ˙2.
Equations (A.4) and (A.5) are just the second-order dynamics and the second-order fixed point
given in the main text (see equations (13) and (14)). One can now readily write down the
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second-order Hamiltonian

δ δ δ

δ

=
∂
∂

− +
∂
∂ ∂

− −

+
∂
∂

−

⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟

( ) ( )( )

( )

( )H R R
H

q
q B

H

q p
q B p A

H

p
p A

, ˙ 1
2

1
2

. (A.6)

p q p q

p q

2

2
0

2
,

2
2

2 2
0

,

2
2

2
2

2
0

2
,

2
2

2

1 1 1 1

1 1

One only need to note that (p, q) take value of + +p A q B( ¯ , ¯ )1 1 instead of p q( ¯ , ¯) as we are at
the second-order approximation.

Appendix B. High-order deviations in quantum adiabatic evolution

The dynamics of the kth-order deviation δ δp q( , )k k can be derived iteratively by substituting
δ δ= + + … +p A A pk

1 2 and δ δ= + + … +q B B qk
1 2 into equations (5) and (8) with the

expansion up to the kth-order, provided the fixed points of all the previous −k( 1) orders have
been obtained. Specifically, δ δp q( , )3 3 can be described by a third-order Hamiltonian

H R R R( , ˙, ¨, )R

t3
d

d

3

3
. The kth-order deviation δ δp q( , )k k forms a pair of canonical variables of a

kth-order Hamiltonian …H R R R( , ˙, ¨, , )k
R

t

d

d

k

k , demonstrating that the kth-order deviation will
undergo adiabatic evolution only if the time derivatives of parameter R up to the kth-order are
all manipulated very slowly in comparison with the intrinsic frequency ωk of the kth-order
Hamiltonian, which is proportional to Γ Γ≈| | | |k 0 .

The kth-order deviation consists of k terms, with the first one associated with the ideal
matrix Γ0 and the adiabatic evolution of the −k( 1) th-order deviation δ δ− −p q( , )k k1 1 , the
second one associated with δΓ and the evolution of δ δ− −p q( , )k k2 2 , and the kth one associated
with δ Γ−k 1 and the zeroth order adiabatic evolution of p q( ¯ , ¯). The sum of the k terms is the
result for the dynamical fixed point of Hk.

To illustrate that a general kth-order theory is possible, we consider here only a rather
simple case where Ṙ is a constant. However, even in this case our expressions appear to be
complicated and hence readers may skip the technical details (we present them just for
completeness). In particular, the kth-order fixed point is

∑Γ Γ Δ Γ=

∂
∂

∂
∂

−−

−

−

−

=

−
−

−

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

⎛
⎝
⎜

⎞
⎠
⎟A

B

A

R
B

R

R
A

B
˙ . (B.1)

k

k

k

k j

k
j k j

k j
0

1

1

1
0

1

1

1

The deviations Δ Γj in equation (B.1) is defined as

∑ ∑ ∑Δ Γ Γ=
+

∂
∂

+ ∂
∂= = =


⎧
⎨⎪
⎩⎪

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎫
⎬⎪
⎭⎪

( ) ( )
i

A
p

B
q

1
( 1)!

(B.2)j j

i

j

r

j

r

r

j

r

i

1 1 1

The function … ( )j in (B.2) is to take the jth-order terms in …( ), i.e., taking the sum of all the
terms of the kind A Bt

u
s
v with + =tu sv j. For example, A2 and B2 are second-order terms in

terms of Ṙ, and A2
2 and A B2 2 become the fourth-order terms, so
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+ + + = + A B A A B A B( )2
2 2 2

2
2 2 2 2, + + + = A B A A B( ) 03

2 2 2
2

2 2 and + + A B(4
2 2

+ = +A A B A A B)2
2

2 2 2
2

2 2, etc. Specifically, when j = 1, ΔΓ δΓ= 1

2
.

In the case of nonconstant adiabatic speed V, we should include the derivatives of the kind
( ≡R t Rd d0 0 )

∑

∂
∂

∂
∂

=

−

−

−

+

+

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

( )

( )

A

R t

B

R t

R

t

d d

d d

·
d

dj

k

k

j j

k

j j

j

j
0

1

1

1

1

1

for the kth-order deviation.
Generally, the hierarchy adiabatic theory can also be naturally extended to n-mode

quantum system by expanding the Γ matrix from dimension 2 × 2 to dimension
− × −n n2( 1) 2( 1).
Finally, it is necessary to make two remarks on high-order deviations. First, the deviations

of all orders are obtained with respect to what the usual quantum adiabatic theorem predicts.
This is the reason that equation (B.2) looks complicated. Second, in deriving the kth-order
deviation in (B.1), we have already assumed the adiabaticity holds for up to the kth-order
Hamiltonian.
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