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Superfluidity of a pure spin current in ultracold Bose gases
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We study the superfluidity of a pure spin current, which is a spin current without a mass current. We examine
two types of pure spin currents, planar and circular, in a spin-1 Bose gas. For the planar current, it is usually
unstable but can be stabilized by the quadratic Zeeman effect. The circular current can be generated with spin-orbit
coupling. When the spin-orbit coupling strength is weak, we find that the circular pure spin current is the ground
state of the system and thus a superflow. We discuss the experimental schemes to realize and detect a pure spin
current.
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I. INTRODUCTION

Since the experimental realization of Bose-Einstein con-
densation in optical traps, much effort has been devoted to the
study of spinor superfluid [1–7]. With the degree of freedom
of spin, spinor superfluid has much richer phases than scalar
superfluid, as it has both superfluid order and spin textures.
However, most spinor superfluids studied till now carry both
spin current and mass current. It will be interesting to see
whether these two currents can decouple and, further, whether
a pure spin current which has no mass current can flow
frictionlessly. Our motivation also originates from condensed
matter physics, in which the concept of a spin superconductor
[8,9], formed by Cooper-like pairs of electrons and holes and
carrying a spin supercurrent, is proposed. It is interesting to
have these ideas realized in the field of cold atoms.

In this work we focus on an unpolarized spin-1 Bose-
Einstein condensate (BEC), where a pure spin current can
be generated by applying a small magnetic gradient. It was
found in Ref. [10] that a planar pure spin current in such a
system is always unstable, as the m = 1,−1 components can
collide into the m = 0 component, destroying the spin current.
We find that the pure spin current can be stabilized with the
quadratic Zeeman effect and become a superflow. Furthermore,
we propose a scheme to create a pure spin current in the ground
state, thus free from the issue of instability. Our scheme utilizes
spin-orbit coupling. Specifically, we study a spin-1 BEC with
Rashba spin-orbit coupling confined in a two-dimensional
harmonic trap and numerically find the ground state of the
system. For antiferromagnetic interactions, opposite vortices
appear in the m = 1,−1 components with equal amplitude
when the spin-orbit coupling is weak. Such a state carries a
pure spin current and no mass current. This spin current is a
superflow, as it is the ground state and must be stable.

We note that there has been a lot of theoretical and
experimental work on the counterflow of two-species BECs
[10–21] and other interesting work addressing the issue of
spin superfluidity [22–25]. For two miscible BECs with
counterflow, it is found that there is a critical relative speed
between the two species, beyond which the state is dynamically
unstable [11–19]. It is shown that the instability can lead to
proliferation of solitons [14,15] and quantum turbulence [16].
This kind of counterflow is very similar to a spin current, but

it is not for two reasons: (i) Theoretically, if we regard the two
species as two components of a pseudospin, this pseudospin
has no SU(2) rotational symmetry, as the number of bosons in
each species is conserved; and (ii) experimentally, it is hard to
control the number of bosons in each component to create a
spin current that has no mass current.

The paper is organized as follows. In Sec. II, we first study
the stability of a spin-1 planar counterflow. We identify the
mechanisms associated with the instabilities and find that the
quadratic Zeeman effect can stabilize such a planar flow. We
then study a similar situation in circular geometry in Sec. III.
The pure spin current consists of a vortex and an antivortex
in the m = −1,1 components. The experimental scheme to
realize the stable pure spin current is discussed in Sec. IV.
Finally, we briefly summarize our main results in Sec. V.

II. PLANAR FLOW

The dynamics of a spin-1 BEC in free space is governed by
the mean-field Gross-Pitaevskii equation [7],

i�
∂

∂t
ψm = −�

2∇2

2M
ψm + c0ρψm + c2

1∑
n=−1

s · Smnψn, (1)

where ψm (m = 1,0,−1) are the components of the macro-
scopic wave function. ρ = ∑1

m=−1 |ψm|2 is the total density,
si = ∑

mn ψ∗
m(Si)mnψn is the spin density vector, and S =

(Sx,Sy,Sz) is the spin operator vector, with Si (i = x,y,z)
being the three Pauli matrices in the spin-1 representation.
The collisional interactions include a spin-independent part,
c0 = 4π�

2(a0 + 2a2)/3M , and a spin-dependent part, c2 =
4π�

2(a2 − a0)/3M , with af (f = 0,2) being the s-wave scat-
tering length for spin-1 atoms in the symmetric channel of
total spin f .

We consider a spin current state of the above Gross-
Pitaevskii equation with the form

ψ =
√

n

2

⎛
⎝eik1·r

0
eik2·r

⎞
⎠ , (2)

where n is the density of the uniform BEC. The wave function
above describes a state with component m = 1 moving at
speed �k1/M , component m = −1 moving at speed �k2/M ,
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and component m = 0 stationary. The requirement of equal
chemical potential leads to |k1| = |k2|. In the case where
k1 = −k2, this state carries a pure spin current: the total mass
current is 0, as it has equal mass counterflow, while the spin
current is nonzero.

It is instructive to first consider the special case where
there is no counterflow, i.e., k1 = k2 = 0. The excitation
spectra are found to be ε0 =

√
2c2nεq + ε2

q and ε±1
1 =√

2c0nεq + ε2
q , ε±1

2 =
√

2c2nεq + ε2
q , respectively, with εq =

�
2q2/2M . So for antiferromagnetic interaction (c0 > 0, c2 >

0), all branches of the spectra are real and there is a
double degeneracy in one branch of the spectra. The phonon
excitations give two sound velocities,

√
nci/M (i = 0,2),

corresponding to the speeds of the density wave and spin wave,
respectively. However, the existence of phonon excitation does
not mean that the pure spin current (k1 = −k2 �= 0) is a
superflow, as we cannot obtain a current with k1 = −k2 �= 0
from a state with k1 = k2 = 0 by a Galilean transformation,
nor can we infer excitation of a state k1 = −k2 �= 0 from that
of a state k1 = k2 = 0 similarly.

The stability of the spin current has been studied in
Ref. [10] for the case k1 = −k2 �= 0. It is found that, for
the antiferromagnetic interaction case (c0 > 0, c2 > 0), the
excitation spectrum of the m = 0 component always has
nonzero imaginary part in the long-wavelength limit as long
as there is counterflow between the two components, and
the imaginary excitations in the m = 1,−1 components only
appear for a high enough relative velocity v1 = 2

√
nc2/M .

For the ferromagnetic interaction case (c0 > 0, c2 < 0), both
excitation spectra of the m = 0 and m = 1,−1 components
have nonzero imaginary parts for any relative velocity. This
means that the pure spin current cannot be stable in any case.

For the general noncollinear case (k = k1+k2
2 �= 0) and

antiferromagnetic interaction, the excitation spectrum for the
m = 0 component is found to be

ε0 =
√(

εq + �2

2M
(|k|2 − |k1|2) + c2n

)2

− c2
2n

2. (3)

We see here that as long as the momenta of the two components
are not exactly parallel, i.e., k1 is not exactly equal to k2, then
|k| < |k1|, and there is always dynamical instability for the
long-wavelength excitations.

Therefore, the spin current in Eq. (2) is generally unstable
and not a superflow. This instability originates from the interac-
tion process described by ψ

†
0ψ

†
0ψ1ψ−1 in the second quantized

Hamiltonian. This energetically favored process converts two
particles in the m = 1,−1 components, respectively, into two
stationary particles in the m = 0 component. To suppress this
process and achieve a stable pure spin current, one can utilize
the quadratic Zeeman effect. With the quadratic Zeeman effect
of a negative coefficient, the Hamiltonian adopts an additional
term, λm2 (λ < 0 and m = 1,0,−1). This term does not change
the energy of the m = 0 component but lowers the energy of the
other two components, m = 1,−1. As a result, there arises a
barrier for two atoms in the m = 1,−1 components scattering
to the m = 0 component, and the scattering process is thus
suppressed.

The above intuitive argument can be made more rigorous
and quantitative. Consider the case k1 = −k2. With the

quadratic Zeeman term, the excitation spectrum for the m = 0
component changes to

ε0 =
√(

εq − �2|k1|2
2M

+ c2n − λ

)2

− c2
2n

2. (4)

So as long as −λ − �
2|k1|2/2M > 0, long-wavelength ex-

citations will be stable for the m = 0 component. From
the excitation of the m = 0 component, one can obtain a
critical relative velocity of the spin current, v0 = 2

√−2λ/M .
There is another nonzero critical velocity, v1 = 2

√
nc2/M ,

determined by the excitations of the m = 1,−1 components.
The overall critical velocity of the system is the lower one of
v0 and v1. Therefore, below the critical relative velocity vc =
min{v0,v1}, the pure spin current is stable and a superflow.
The experimental scheme to realize such a Zeeman effect is
discussed in Sec. IV.

III. CIRCULAR FLOW

In cylindrical geometry, we consider a pure spin current
formed by two vortices with opposite circulation in the m =
1,−1 components. From similar arguments, one can expect
that interaction will make such a current unstable. Inspired by
the quadratic Zeeman effect method above, we propose to use
spin-orbit coupling to stabilize it. The spin-orbit coupling can
be viewed as a momentum-dependent effective magnetic field
that is exerted only on the m = 1,−1 components. Therefore,
it is possible that spin-orbit coupling lowers the energy of
m = 1,−1 components and, consequently, suppresses the
interaction process leading to the instability.

The model of a spin-1 BEC subject to Rashba spin-orbit
coupling can be described by the energy functional

E[ψα] =
∫

dr
{ ∑

α

�
2|∇ψα|2

2M
+ ρV (r) + c̃0

2
ρ2 + c̃2

2
s2

+ γ 〈Sxpy − Sypx〉
}
, (5)

where ρ is the density, V (r) = 1
2Mω2(x2 + y2) is the trapping

potential, and γ is the strength of the spin-orbit coupling.
〈· · · 〉 is the expectation value taken with respect to the
three-component wave function ψ = (ψ1,ψ0,ψ−1)T . Here we
assume that the confinement in the z direction is very tight
with trapping frequency �ωz � μ,kBT , μ being the chemical
potential and T the temperature, and have integrated the
model with respect to the z direction to obtain an effective
two-dimensional system. The two-dimensional coupling con-
stants are related to the three-dimensional scattering lengths
through the relations c̃0 = √

8π�
2(a0 + 2a2)/3Mlz and c̃2 =√

8π�
2(a2 − a0)/3Mlz, with lz = √

�/Mωz [26]. The strength
of the spin-orbit coupling γ defines a characteristic length
asoc = �/Mγ and can be rescaled to be dimensionless with
respect to the harmonic oscillator length ah = √

�/Mω. Then
we characterize the strength of spin-orbit coupling with the
dimensionless quantity κ = ah/asoc = γ

√
M/�ω. Spin-orbit

coupling of the Rashba type here can be generated in various
ways, which are discussed in the next section.

The above model can describe a spin-1 BEC of 23Na
confined in a pancake trap. Assume that the atom number is
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FIG. 1. (Color online) Amplitudes (a1, b1, c1) and phase angles
(a2, b2, c2) of the three-component wave function ψ = (ψ1,ψ0,ψ−1)T

in the ground state of Hamiltonian (5) for a BEC of 23Na confined in
a pancake trap. The particle number is 105, the radial frequency of
the trap is 2π × 55 Hz, and the dimensionless spin-orbit coupling
strength is κ = 0.04. The confinement in the z direction is very
tight, with ωz = 2π × 4200 Hz, so the system is effectively two-
dimensional. Units of the X and Y axes are ah.

about 105. Using the estimate of scattering lengths a0 = 50aB ,
a2 = 55aB [27], with aB being the Bohr radius, the ground
state of spin-1 23Na should be antiferromagnetic because c̃0 >

0, c̃2 > 0 [5]. Previous studies of spin-1 BECs with Rashba
spin-orbit coupling mostly focus on the strong spin-orbit
coupling regime, where the ground state is found to be the
plane-wave phase or the stripe phase, for ferromagnetic in-
teraction and antiferromagnetic interaction, respectively [28].
Here we are interested in the antiferromagnetic interaction case
and the weak spin-orbit coupling regime (κ 	 1) and calculate
the ground-state wave function of the energy functional with
the method of imaginary time evolution.

We find that when the spin-orbit coupling is weak (κ 	 1),
the ground-state wave function has the form

ψ =

⎛
⎜⎝

χ1(r)e−iφ

χ0(r)

χ−1(r)eiφ

⎞
⎟⎠ , (6)

with χ1(r) = −χ−1(r) and all χi real. The ground state is
shown in Fig. 1. This ground state consists of an antivortex in
the m = 1 component and a vortex in the m = −1 component.

The m = 0 component does not carry angular momentum.
Since |ψ1| = |ψ−1|, the net mass current vanishes.

The wave function in Eq. (6) can be understood at the
single-particle level. In terms of the ladder operators of spin
and angular momentum, the spin-orbit coupling term reads

Hsoc = γ
√

M�ω

2
[S+(âR − â

†
L) + S−(â†

R − âL)], (7)

where S± is the ladder operator of spin, and â
†
L(R) is the creation

operator of the left (right) circular quanta [29]. When the spin-
orbit coupling is very weak (κ 	 1), its effect can be accounted
for in a perturbative way. From the ground state �(0) = |0,0〉,
the first-order correction to the wave function for small γ is
given by

�(1) = γ
√

M�ω

2�ω
(−S+â

†
L + S−â

†
R)|0,0〉

= κ

2
(−|1,−1〉 + | − 1,1〉), (8)

where |ms,mo〉 denotes a state with spin quantum number ms

and orbital magnetic quantum number mo. One immediately
sees that ψ1 has angular momentum −� and ψ−1 has angular
momentum �. Besides, the amplitudes of both ψ1 and ψ−1 are
proportional to κ .

There exits a continuity equation for the spin density and
spin current, which is

d

dt
(ψ†Sμψ) + ∇ · Js

μ = 0. (9)

The spin current density tensor Js
μ (μ = x,y,z denotes the spin

component) is defined as [30,31]

Js
μ =1

2
{ψ†Sμvψ + c.c.}

=1

2

{∑
m,n,l

ψ∗
m(Sμ)mnvnlψl + c.c.

}
, (10)

where

vnl = p
M

+ γ (ẑ × Snl) , (11)

and c.c. means the complex conjugate. The second part of vnl

is induced by the spin-orbit coupling.
By the definition in Eq. (10), the spin current density carried

by the ground state, (6), is

Js
x = γ sin 2φ|ψ1|2x̂ + γ (|ψ0|2 + 2|ψ1|2 sin2 φ)ŷ,

Js
y = −γ (|ψ0|2 + 2|ψ1|2 cos2 φ)x̂ − γ sin 2φ|ψ1|2ŷ,

Js
z =

(
−2�|ψ1|2

Mr
+

√
2γ |ψ1ψ0|

)
φ̂. (12)

From both analytical and numerical results of the wave
function, |ψ1| 	 |ψ0|, so Js

x roughly points in the y direction,
while Js

y almost points in the −x direction. Js
z represents a flow

whose amplitude has rotational symmetry. From the numerical
results shown in Fig. 2, we see that Js

z is a counterclockwise
flow. The amplitudes of Js

x and Js
y are of the same order, both

proportional to κ , while that of Js
z, proportional to κ2, is much

lower. It is evident that the state in Eq. (6) carries no mass
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FIG. 2. (Color online) Distribution of the spin current densities
Js

x (blue arrow), Js
y (red arrow), and Js

z (black arrow) of the ground
state shown in Fig. 1. The length of the arrows represents the strength
of the spin current. The arrow length of different colors is not to scale.
κ = 0.04. Units of the X and Y axes are ah.

current and only pure spin current. Since the spin current is in
the ground state, it must be stable. In this way, we have realized
a superfluid of pure spin current, or a pure spin supercurrent.

IV. EXPERIMENTAL SCHEMES

In this section, we propose the experimental schemes to
generate and detect the pure spin currents discussed in Secs. II
and III.

The planar pure spin current can be easily generated. By
applying a magnetic-field gradient, the two components m =
1,−1 will be accelerated in opposite directions and a pure spin
current is generated as done in Refs. [14] and [15]. To stabilize
this spin current, one needs to generate the quadratic Zeeman
effect. We apply an oscillating magnetic field B sin ωt , with
the frequency ω being much higher than the characteristic
frequency of the condensate, e.g., the chemical potential μ.
The time averaging removes the linear Zeeman effect; only
the quadratic Zeeman effect remains. The coefficient of the
quadratic Zeeman effect from the second-order perturbation
theory is given by λ = (gμBB)2 /�Ehf , where g is the Landé
g factor of the atom, μB is the Bohr magneton, and �Ehf is
the hyperfine energy splitting [32]. For the F = 2 manifold of
87Rb, �Ehf < 0, so the coefficient of the quadratic Zeeman
effect is negative.

The circular flow in Sec. III may find prospective realiza-
tions in two systems: cold atoms and exciton BEC. In cold
atoms, we consider a system consisting of a BEC of 23Na
confined in a pancake trap, where the confinement in the z

direction is so tight that one can treat the system effectively
as two-dimensional. Spin-orbit coupling can be induced by
two methods. One is by the exertion of a strong external
electric field E in the z direction. Due to the relativistic effect,
the magnetic moment of the atom will experience a weak
spin-orbit coupling, where the strength γ = gμB |E|/Mc2.
Here M is the atomic mass and c is the speed of light. For
weak spin-orbit coupling (small γ ), the fraction of atoms
in the m = 1,−1 components is proportional to γ 2. For an
experimentally observable fraction of atoms, e.g., 0.1% of
105 atoms, using the typical parameters of 23Na BEC, the
estimated electric field is of the same order of magnitude as
the vacuum breakdown field. For atoms with a smaller mass
or larger magnetic moment, the required electric field can
be lowered. Another method of realizing spin-orbit coupling
is to exploit the atom-laser interaction, where, in principle,
strong spin-orbit coupling can be created [33]. In exciton BEC
systems, as the effective mass of the exciton is much smaller
than that of the atom, the required electric field is four to
five orders of magnitude smaller, which is quite feasible in
experiments [34–37].

The vortex and antivortex in the m = 1,−1 components
can be detected by the method of time of flight. First, one
can split the three spin components with the Stern-Gerlach
effect. The appearance of a vortex or an antivortex in the
m = 1,−1 components is signaled by a ring structure in the
time-of-flight image. After a sufficiently long expansion time,
the ring structure should be clearly visible.

V. CONCLUSION

In summary, we have studied the stability of a pure spin
current of a spin-1 BEC. In planar flow, the system always
suffers dynamical instability. The origin of the instability is the
interaction process that converts two particles in the m = 1,−1
components into the m = 0 component. Based on this, we
propose a method to stabilize the pure spin current by utilizing
the quadratic Zeeman effect. In circular flow, we have proposed
using spin-orbit coupling to make the pure spin current stable.
For weak spin-orbit coupling, we have found that the ground
state of the system is a superfluid of pure spin current. The
experimental schemes to realize and detect these pure spin
currents have been discussed.
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