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Majorana modes in solid state systems and its dynamics
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We review the properties of Majorana fermions in particle physics and point out that Majorana modes
in solid state systems are significantly different. The key reason is the concept of anti-particle in
solid state systems is different from its counterpart in particle physics. We define Majorana modes
as the eigenstates of Majorana operators and find that they can exist both at edges and in the bulk.
According to our definition, only one single Majorana mode can exist in a system no matter at edges or
in the bulk. Kitaev’s spinless p-wave superconductor is used to illustrate our results and the dynamical
behavior of the Majorana modes.
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1 Introduction

As an elementary particle, Majorana fermion is a fermion
whose anti-particle is itself. Mathematically, it is the
result of quantizing a real Dirac field. This is similar
to the case where quantizing the real electromagnetic
field leads to photon whose anti-particle is itself. So far,
there is no direct observation of Majorana fermion as
an elementary particle [1]. In recent years, there have
been intensive efforts to explore the possible existence
of Majorana fermion-like state as edge modes in con-
densed matter systems [2–17]. Observation of the Majo-
rana zero modes has been reported in many experiments
[18–23].

In this work we review the basic features of Majorana
fermion as an elementary particle. We point out that due
to the lack of the existence of real antiparticle, the Majo-
rana fermions in condensed matter systems are different
from Majorana fermions in high energy physics although
they do share some common features. In this perspec-
tive, to avoid confusion, it is better to call Majorana
fermion-like states found in condensed matter systems
Majorana modes.

*arXiv: 1609.06407.

We define a Majorana mode as an eigenstate of Majo-
rana operator γ† = c† + c, where c† and c are creation
and annihilation operators of electrons, respectively. Our
definition of Majorana mode is illustrated with Kitaev’s
model of one dimensional spinless p-wave superconduc-
tor [2]. Usually researchers mainly focus on the Majorana
edge modes as topologically protected states and whether
robust against modulation or disorders [11, 12, 15, 16]. It
is clear from our definition that the Majorana modes
can exist both at the edges and in the bulk. At the
edge, our Majorana mode is an energy eigenstate. In
the bulk, our Majorana mode is not an energy eigenstate
thus can evolve dynamically. The dynamics of our Majo-
rana mode in the bulk is characterized by hopping back
and forth along the chain accompanied by the Majorana
mode switching its type cyclically.

Because an electron can be mathematically written as
a pair of Majorana operators, it is a common belief that
Majorana fermions only occur in pairs. For instance, in
the Kitaev chain system, it is generally believed that
there is a pair of Majorana fermions (or modes) of differ-
ent types at both edges of the chain. However, according
to our definition, we can show that only one single Majo-
rana mode can exist along the whole chain. A Majorana
mode in the bulk excludes the existence of that on the
edge and vice versa.

© Higher Education Press and Springer-Verlag GmbH Germany 2018



Research article

2 Majorana fermion in particle physics

We start by reviewing the basic concepts of particle and
anti-particle in particle physics, which can be found in
any standard book on quantum field theory [24]. Particle
and anti-particle arise naturally when we quantize a free
Dirac field ψ(x). For clarity, we consider only the one di-
mensional case and omit time variable. The quantization
starts with a Fourier expansion (~ = c = 1)

ψ(x)=
∑

k,r=1,2

1√
2V Ek

[br(k)ur(k)e−ikx+d†r(k)vr(k)eikx],

(1)

where V is the volume, Ek is the energy, and k is the mo-
mentum. ur(k) (vr(k)) is the four-component spinor of
the positive (negative) energy branch, and br(k) (dr(k))
is the field operator at a given momentum. Imposing the
anti-commutation relation for fermions {br(k), b†r′(k′)} =

{dr(k), d†r′(k′)} = δkk′δrr′ , we find that the energy and
charge operator can be written as (neglecting an overall
constant),

E =
∑

k,r=1,2

Ek[b
†
r(k)br(k) + d†r(k)dr(k)], (2)

Q = e
∑

k,r=1,2

[b†r(k)br(k)− d†r(k)dr(k)], (3)

with e being the elementary charge that cannot be fixed
by Dirac equation. It is apparent that, according to
Eqs. (2) and (3), br(k) and dr(k) are the operators for the
Dirac fermion and its anti-fermion, respectively, which
possess the same positive energy but the opposite charge.

For the purpose of comparison with the condensed
matter system, it is important to note two points: (i)
particle and its anti-particle are physically two different
entities, which have opposite charges. (ii) Mathemati-
cally, the creation operator for particle b†r(k) is not the
annihilation operator of the anti-particle dr(k).

Majorana fermion arises when the Dirac field is real,
ψ(x) = ψ∗(x). In this case we have to write

ψ(x) =
∑

k,r=1,2

1√
2V Ek

[
br(k) + dr(k)√

2
ur(k)e−ikx

+
b†r(k) + d†r(k)√

2
u∗r(k)eikx

]
. (4)

We let

m†
r(k) =

[
b†r(k) + d†r(k)

]
/
√
2. (5)

This is the Majorana creation operator in particle
physics. This shows that a Majorana fermion is effec-
tively a superposition of a fermion and its anti-particle.

That the Majorana fermion is its own anti-particle is
manifested in that m† does not change when b† and d†

exchange their role under charge conjugate operation. In
other words, the Majorana fermion as an elementary par-
ticle is not manifested mathematically with m† = m. In
particle physics, we always have m† ̸= m. It is very im-
portant to bear this in mind when we discuss Majorana
fermion in solid state physics.

3 Majorana fermions in solid state systems

It is clear from the above brief review that the exis-
tence of anti-particle is essential to the concept of Majo-
rana fermion. However, in solid state systems, the real
anti-particle of the electron, the positron, does not ex-
ist, and the positively charged real particles are ions,
which have different masses. The closest thing to the
anti-particle of electron is hole, which emerges when an
electron is annihilated from the Fermi sea, ck |Fermi sea⟩
(or cj |Fermi sea⟩). Physically, this hole is positively
charged due to the existence of positive ion background
and has effectively the mass of an electron. This is sim-
ilar to the anti-particle in particle physics, which has
opposite charge of the particle while sharing the same
mass. As indicated in Eq. (5), Majorana fermion in par-
ticle physics is a superposition of a fermion and its anti-
particle. If we follow this rule, a Majorana operator in
solid state systems has to be defined as [2]

γ† = c† + c. (6)

However, physically and mathematically the Majo-
rana fermion defined above is different from Majorana
fermion as an elementary particle. Mathematically, we
have γ† = γ while m† ̸= m. Physically, the hole does
not have its own identity: while we can create an elec-
tron with c† |vaccum⟩, we get nothing with c |vaccum⟩.
In contrast, in particle physics, we can create simulta-
neously a particle and its anti-particle with b† |vaccum⟩
and d† |vaccum⟩. In particle physics, an anti-particle is a
real particle existing on top of a vacuum with a given mo-
mentum or at a given position. In solid state systems,
the hole state ck |Fermi sea⟩ (or cj |Fermi sea⟩) repre-
sents physically an empty (vacuum) state at a given mo-
mentum k (or a given physical site j).

There is another possibility of having Majorana
fermions in solid state systems. In superconductors, an
electron can be screened by superconducting Cooper
pairs to be charge neutral [1]. In this case, the electron is
effectively its own anti-particle and becomes a Majorana
fermion. However, so far there is no quantitative calcu-
lation to show such an efficient screening and no experi-
ment demonstrates that the electron in a superconductor
behaves like a neutral particle. Still there is difference. In
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particle physics, m† |any state⟩ and m |any state⟩ are two
different states. In a superconductor where the charge
screening is very effective, c† |SC⟩ and c |SC⟩ are the same
state as the superconducting state |SC⟩ is the same with
one more or less Cooper pair [1].

There have been many studies [3–17], which show that
the Majorana operator γ† is related to many interesting
physics in solid state systems. Therefore, it is meaningful
to study Majorana fermion-related physics in solid state
systems as long as we bear in mind all the differences
discussed above.

We focus on lattice models with c†j , cj denoting cre-
ation and annihilation operators at site j, respectively.
Following Kitaev [2], we introduce the Majorana opera-
tor

γj,θ = c†je2iθ + cje−2iθ, (7)

which is more general than the one in Eq. (6). One can
easily check that γj,θ = γ†j,θ and γ2j,θ = 1. As a result, the
Majorana operator γj,θ can have only two eigenvalues ±1
and the corresponding eigenstates are

|j, θ,±⟩ = |0⟩je−iθ ± |1⟩jeiθ, (8)

where |0⟩j denotes the vacuum at site j and |1⟩j denotes
an electron at j. We immediately notice that |j, θ,−⟩
is also the eigenstate of γj,θ+π/2 with eigenvalue 1, i.e.,
|j, θ,−⟩ = |j, θ + π/2,+⟩. This means that we can focus
only on eigenstates |j, θ,+⟩. For simplicity, we will al-
ways use |j, θ⟩ = |j, θ,+⟩ from now on. If we introduce
the following “charge conjugate” operator

C|1⟩jeiθ = |0⟩je−iθ, C|0⟩je−iθ = |1⟩jeiθ. (9)

we apparently have |j, θ⟩ = C|j, θ⟩. This is the Majorana
mode which is the same as its anti-mode.

The Majorana-related physics in solid state systems
is about the properties of these eigenstates and how to
create and manipulate them [3–17]. In the next sec-
tion, we shall use Kitaev’s model [2] to illustrate some
of its properties. And we call these eigenstates Majo-
rana modes to avoid confusion with Majorana fermion in
particle physics.

4 Kitave’s superconducting chain

In this section, we consider the one dimensional Kitaev
model, which describes a spinless p-wave superconductor.
Its Hamiltonian is given by [2, 25]

H = −µ
L∑

j=1

c†jcj−
L−1∑
j=1

(tpc
†
jcj+1+∆c†jc

†
j+1+h.c.), (10)

where h.c. is for hermitian conjugate, µ is the chemical
potential, cj is the electron annihilation operator for site

j, and L is the length of the chain. The tunneling tp and
superconducting gap ∆ = |∆|eiα are the same for all the
sites. For simplicity and without loss of generality, we
assume ∆ = |∆|. The Kitaev system can be realized
experimentally by contacting a nanowire that has strong
spin-orbit coupling (e.g., InSb and InAs nanowire) with a
s-wave superconductor and in a Zeeman field [18, 19, 26].
For clarity, in this work we focus on the condition µ = 0,
tp = ∆ [2, 25].

Mathematically, an electron can be written as a super-
position of a pair of Majorana operators,

c†j =
1

2
(γ†j,0 − iγ†j,π4

), cj =
1

2
(γ†j,0 + iγ†j,π4

). (11)

where γj,0 = γ†j,0 and γj,π4 = γ†j,π4
are defined in Eq. (7).

Majorana operators at neighboring sites can be combined
to form two new operators,

c̃†j =
1

2
(γ†j,π4

− iγ†j+1,0), c̃j =
1

2
(γ†j,π4

+ iγ†j+1,0);

c̃†L =
1

2
(γ†L,π4

− iγ†1,0), c̃L =
1

2
(γ†L,π4

+ iγ†1,0). (12)

where j = 1, 2, · · · , L − 1. One can verify that c̃†j and
c̃j are ordinary fermionic creation and annihilation op-
erators, i.e., [c̃j , c̃

†
k]+ = δjk. With these newly defined

operators, the Kitaev Hamiltonian in Eq. (10) becomes

H = i∆
L−1∑
j=1

γj,π4 γj+1,0 = 2∆
L−1∑
j=1

(
c̃†j c̃j −

1

2

)
. (13)

This shows that the energy eigenstates of this supercon-
ductor are composed of integer number of quasi-particles
denoted by c̃†j , c̃j instead of real electrons. The ground
state |g⟩ of this system satisfies

c̃j |g⟩ = 0, for j = 1, 2, . . . , L. (14)

With Eq. (12), we find that the ground state has the
following exact form

|g⟩ = 1√
2L−1

 L∏
j=1

(1 + c†j)−
L∏

j=1

(1− c†j)

 |0⟩, (15)

which is an equal-weight superposition of all Fock states
with odd fermion numbers.

Note that the Majorana operator γ1,0 at the left end
and the Majorana operator γL,π4

at the right end are
missing in the diagonalized Hamiltonian (13). As a re-
sult, the operators c̃L and c̃†L are also missing. This
means that the Kitaev chain has two degenerate ground
states, |g⟩ and c̃†L |g⟩. With Eq. (15), we obtain c̃†L |g⟩
as

c̃†L |g⟩ = 1√
2L−1

 L∏
j=1

(1 + c†j) +
L∏

j=1

(1− c†j)

 |0⟩, (16)
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which is an equal-weight superposition of all Fock states
with even fermion numbers.

4.1 Majorana edge modes

We now examine the properties of the Majorana modes
in the Kitaev chain. Using the two degenerate ground
states, we define two states

|1, 0⟩ = |g⟩+ ic̃†L|g⟩, (17)

|1, π
2
⟩ = |g⟩ − ic̃†L|g⟩. (18)

These two states are orthonormal to each other. Fur-
thermore, they are Majorana modes as we have

γ1,0|1, 0⟩ = |1, 0⟩, (19)

γ1,π2

∣∣∣1, π
2

⟩
=

∣∣∣1, π
2

⟩
. (20)

Interestingly, the two states |1, 0⟩ and |1, π2 ⟩ do not con-
tain any Majorana mode on site L, the right end of the
chain, since

γL,θ|1, 0⟩ ̸= |1, 0⟩,

γL,θ′

∣∣∣1, π
2

⟩
̸=

∣∣∣1, π
2

⟩
(21)

for any θ, θ′. This is contrary to the general belief that
there is a pair of Majorana modes at both ends [2, 25].

Alternatively, we can define another pair of orthonor-
mal states∣∣∣L, π

4

⟩
= |g⟩+ c̃†L|g⟩, (22)∣∣∣∣L, 3π4
⟩

= |g⟩ − c̃†L|g⟩. (23)

Similarly, we have

γL,π4

∣∣∣L, π
4

⟩
=

∣∣∣L, π
4

⟩
, (24)

γL, 3π4

∣∣∣∣L, 3π4
⟩

=

∣∣∣∣L, 3π4
⟩
. (25)

Now we have a Majorana mode of either γL,π4
or γL, 3π4

at site L, the right end of the chain. In the same way we
find that

γ1,θ

∣∣∣L, π
4

⟩
̸=

∣∣∣L, π
4

⟩
,

γ1,θ′

∣∣∣∣L, 3π4
⟩

̸=
∣∣∣∣L, 3π4

⟩
(26)

for any θ, θ′.
As shown by Eqs. (21) and (26), it can be checked

that no combination of |g⟩ and c̃†L|g⟩ can give us a pair
of Majorana modes, one at the left end and the other at
the right end.

In literature, there is no precise mathematical defi-
nition for Majorana mode. It is usually believed that

a Majorana mode occurs on a site when an unpaired
Majorana operator is missing in the Hamiltonian (does
not participate in any dynamics) [2, 25]. This vaguely-
defined concept then leads to the following results: (i)
there is a pair of Majorana modes at both ends and (ii)
the Majorana mode must come in pair since an electron
operator, as shown in Eq. (11), can be written as a sum
of two Majorana operators. In addition, because a Ma-
jorana operator can also be written as the combination
of two electron operators (annihilation and creation), a
Majorana mode defined in coordinate space is believed to
assume a local wavepacket (superposition of particle and
hole). However, as shown in Eqs. (15) and (16), there is
no local mode but only collective one in either of the two
ground states.

Here in Section 3, enlightened by the definition of Ma-
jorana fermions in particle physics, we define the Majo-
rana modes more precisely as the eigenstate of Majorana
operators, where a Majorana mode can be found directly.
According to our definition, (i) the Majorana mode may
not come in pair and in Kitaev chain system, it is shown
that only one single Majorana mode may arise, either at
the left end or at the right end; (ii) since the local Majo-
rana mode is defined as the eigenstate of the local Ma-
jorana operator, there is no need for the local Majorana
mode to present itself as a local wavepacket. Mathemat-
ically, our definition is self-contained and rational.

4.2 Majorana modes in the bulk

In the bulk we can have a similar superposition state,∣∣∣j, π
4

⟩
= |g⟩+ c̃†j |g⟩, for j ̸= L. (27)

As one can readily check that γj,π4 |j,
π
4 ⟩ = |j, π4 ⟩, this

is a Majorana mode on bulk site j of type π
4 . However,

|j, π4 ⟩ is a superposition of two different eigenstates of the
Hamiltonian (13) with the eigen-energy difference being
2∆. This means that this Majorana mode will evolve
dynamically.

Specifically, with the initial state |ψ(0)⟩ = |j, π4 ⟩, the
system evolves with time as (neglecting an overall phase),

|ψ(t)⟩ = |g⟩+ c̃†j |g⟩e−i2∆t/~. (28)

The dynamics is cyclic with a period of T = π~
∆ . After a

quarter of the period, t = T
4 = π~

4∆ , the state evolves to

|ψ(π~/4∆)⟩ =
∣∣∣j + 1,

π

2

⟩
= |g⟩ − ic̃†j |g⟩. (29)

This is a Majorana mode of type π
2 on site j + 1. After

the second quarter period, the state becomes

|ψ(π~/2∆)⟩ =
∣∣∣∣j, 3π4

⟩
= |g⟩ − c̃†j |g⟩. (30)
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This is a Majorana mode of type 3π
4 on site j. After the

third quarter period, the state becomes

|ψ(3π~/4∆)⟩ = |j + 1, 0⟩ = |g⟩+ ic̃†j |g⟩. (31)

This is a Majorana fermion of type 0 on site j+1. After
a whole period of the evolution, the state returns to the
initial state |ψ(π~/∆)⟩ = |j, π4 ⟩. This dynamical cycle
can be summarized as∣∣∣j, π

4

⟩
→

∣∣∣j + 1,
π

2

⟩
→

∣∣∣∣j, 3π4
⟩

→ |j + 1, 0⟩ →
∣∣∣j, π

4

⟩
.

(32)

The results can be naturally generalized to the case of
complex superconducting gap ∆ = |∆|eiξ, where the dy-
namics is identical except that there is a phase shift ξ/4
for all corresponding Majorana modes.

In this sense, we can have Majorana modes in the bulk.
The crucial difference from the Majorana edge modes is
that these bulk Majorana modes are not energy eigen-
states and oscillate dynamically.

Is it possible to have two Majorana modes simultane-
ously along the Kitaev’s chain? The answer is no. As a
simple example, we consider the following state,

|ψ(0)⟩ =
∣∣∣j1, π

4
; j2,

π

4

⟩
= (1 + c̃†j1)(1 + c̃†j2)|g⟩, (33)

where j1, j2 ̸= L. We have at site j1

γj1,π4

∣∣∣j1, π
4
; j2,

π

4

⟩
=

∣∣∣j1, π
4
; j2,

π

4

⟩
. (34)

However, at site j2, we have

γj2,π4

∣∣∣j1, π
4
; j2,

π

4

⟩
= (1− c̃†j1)(1 + c̃†j2)|g⟩

̸=
∣∣∣j1, π

4
; j2,

π

4

⟩
. (35)

This means that this state is a Majorana mode at site
j1 but not a Majorana mode at site j2. It appears that
the existence of Majorana mode at site j1 excludes the
emergence of Majorana fermion on site j2. According to
the Hamiltonian (13), this state evolves with time as

|ψ(t)⟩ = (1 + c̃†j1e−i2∆t/~)(1 + c̃†j2e−i2∆t/~)|g⟩. (36)

It can be shown easily that, at site j1, the sequence in
Eq. (32) holds while the dynamics at site j2 does not
involve any Majorana mode.

In general we may construct the following state∣∣∣j1, π
4
; j2,

π

4
; . . . ; jn,

π

4

⟩
= (1 + c̃†j1)(1 + c̃†j2) . . . (1 + c̃†jn)|g⟩, (37)

where j1 ̸= j2 ̸= . . . ̸= jn. One can easily check that the
Majorana sequence in Eq. (32) occurs only at site j1 and

no Majorana modes at any other sites. It is interesting
to consider a special example that is given by

|ψ(0)⟩ =
∣∣∣L, π

4
; j1,

π

4
; . . . ; jn,

π

4

⟩
= (1 + c̃†L)(1 + c̃†j1) . . . (1 + c̃†jn)|g⟩ . (38)

It is clear that this state has a Majorana mode at site L.
Its dynamical evolution is

|ψ(t)⟩ = (1+ c̃†L)(1+ c̃
†
j1

e−i2∆t/~) . . . (1+ c̃†jne−i2∆t/~)|g⟩.
(39)

It can be checked easily that, at any time, the following
relation holds

γL,π4
|ψ(t)⟩ = |ψ(t)⟩. (40)

This shows explicitly that a Majorana mode of type π
4

is not affected by the bustling dynamics at other sites, a
feature that has inspired the current research on Majo-
rana physics in condensed matter systems.

One may have noticed an interesting feature in the
above oscillating dynamics: the dynamics is localized
and the wave function of a Majorana fermion can never
spread to infinity. It is quite peculiar as we know that
the wave function of an electron in a real vacuum always
diffuses and can spread to infinity. Localization in wave
dynamics happens in rare occasions, such as Anderson
localization in random potentials and solitons in nonlin-
ear media.

Our discussion so far is done with the condition µ = 0,
tp = d. When this condition is slightly altered, the es-
sential physics does not change. The cyclic hopping can
still occur. The only difference is that the wave function
of the Majorana mode spreads over several lattice sites,
instead of the ideal localization that we have with µ = 0,
tp = d.

The oscillatory process is essentially a type of Zit-
terbewegung oscillation. To see this, we carry out a
Fourier transformation to the momentum space, i.e.,
c†k = 1√

N

∑
j c

†
j exp (ijka). Without loss of generality, we

assume a = 1. The Kitaev Hamiltonian in Eq. (10) then
becomes

H =
∑
k

(c†k c−k)Hk

(
ck
c†−k

)
, (41)

where

Hk =

(
ξ(k) η(k)
η(k)∗ −ξ(k)

)
. (42)

with ξ(k) = −µ − 2tp cos(k) and η(k) = i2∆ sin(k). In
the momentum space the Kitaev model is seen to as-
sume a form identical to the BCS Hamiltonian. If we
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regard particle and hole as two components of a pseudo-
spin, then the rotation of this pseudo-spin is governed
by the Hamiltonian Hk. Due to the dependence of Hk

on k, the pseudo-spin is coupled to momentum k. We
have an effective spin–orbit coupling; the cyclic dynam-
ics in Eq. (32) is essentially a type of Zitterbewegung
oscillation.

In summary, we have reviewed the concept of Majo-
rana fermion as an elementary particle. We pointed out
that such a Majorana fermion does not exist in solid state
systems due to the lack of real anti-particle. However,
despite this crucial difference, one can regard hole as the
anti-particle of electron in solid state physics and define
a Majorana operator. The physics related to this Ma-
jorana operator can be very interesting and useful. We
have illustrated it with Kitaev’s superconducting chain
model.

Acknowledgements Q. Z. thanks Erhai Zhao for discussions on
the Kitaev chain and the partial support by AFOSR FA9550-12-1-
0079 as a visiting scholar at George Mason University. This work
was supported by the National Basic Research Program of China
(Grants No. 2013CB921903) and the National Natural Science
Foundation of China (Grants Nos. 11334001 and 11429402).

References and notes

1. F. Wilczek, Majorana returns, Nat. Phys. 5(9), 614
(2009)

2. A. Kitaev, Unpaired Majorana fermions in quantum
wires, Phys. Uspekhi 44(10S), 131 (2001)

3. S. B. Chung and S. C. Zhang, Detecting the Majorana
fermion surface state of 3He–B through spin relaxation,
Phys. Rev. Lett. 103(23), 235301 (2009)

4. G. Strübi, W. Belzig, M. S. Choi, and C. Bruder, In-
terferometric and noise signatures of Majorana fermion
edge states in transport experiments, Phys. Rev. Lett.
107(13), 136403 (2011)

5. L. Fidkowski, J. Alicea, N. H. Lindner, R. M. Lutchyn,
and M. P. A. Fisher, Universal transport signatures of
Majorana fermions in superconductor-Luttinger liquid
junctions, Phys. Rev. B 85(24), 245121 (2012)

6. J. Reuther, J. Alicea, and A. Yacoby, Gate-defined wires
in HgTe quantum wells: From Majorana fermions to
spintronics, Phys. Rev. X 3(3), 031011 (2013)

7. J. K. Pachos, E. Alba, V. Lahtinen, and J. J. Garcia-
Ripoll, Seeing Majorana fermions in time-of-flight im-
ages of staggered spinless fermions coupled by s-wave
pairing, Phys. Rev. A 88(1), 013622 (2013)

8. M. Gong, L. Mao, S. Tewari, and C. W. Zhang, Majo-
rana fermions under uniaxial stress in semiconductor-
superconductor heterostructures, Phys. Rev. B 87,
060502(R) (2013)

9. A. Kundu and B. Seradjeh, Transport signatures of flo-
quet Majorana fermions in driven topological supercon-
ductors, Phys. Rev. Lett. 111(13), 136402 (2013)

10. J. Knolle, D. L. Kovrizhin, J. T. Chalker, and R. Moess-
ner, Dynamics of a two-dimensional quantum spin liq-
uid: Signatures of emergent Majorana fermions and
fluxes, Phys. Rev. Lett. 112(20), 207203 (2014)

11. L. J. Lang and S. Chen, Majorana fermions in density-
modulated p-wave superconducting wires, Phys. Rev. B
86(20), 205135 (2012)

12. P. Wang, S. Chen, and X. L. Gao, Effect of incommen-
surate potential on the resonant tunneling through Ma-
jorana bound states on the topological superconductor
chains, Eur. Phys. J. B 87(7), 164 (2014)

13. X.-J. Liu and A. M. Lobos, Manipulating Majorana
fermions in quantum nanowires with broken inversion
symmetry, Phys. Rev. B 87, 060504(R) (2013)

14. X. J. Liu, C. L. M. Wong, and K. T. Law, Non-Abelian
Majorana doublets in time-reversal-invariant topologi-
cal superconductors, Phys. Rev. X 4(2), 021018 (2014)

15. Y. Hu, Z. Cai, M. A. Baranov, and P. Zoller, Majorana
fermions in noisy Kitaev wires, Phys. Rev. B 92(16),
165118 (2015)

16. Y. Hu and M. A. Baranov, Effects of gapless bosonic
fluctuations on Majorana fermions in an atomic wire
coupled to a molecular reservoir, Phys. Rev. A 92(5),
053615 (2015)

17. M. Maiti, K. M. Kulikov, K. Sengupta, and Y. M.
Shukrinov, Josephson junction detectors for Majorana
modes and Dirac fermions, Phys. Rev. B 92(22), 224501
(2015)

18. V. Mourik, K. Zuo, S. M. Frolov, S. R. Plissard, E.
P. A. M. Bakkers, and L. P. Kouwenhoven, Signa-
tures of Majorana fermions in hybrid superconductor-
semiconductor nanowire devices, Science 336(6084),
1003 (2012)

19. M. T. Deng, C. L. Yu, G. Y. Huang, M. Larsson, P.
Caroff, and H. Q. Xu, Anomalous zero-bias conductance
peak in a Nb-InSb nanowire-Nb hybrid device, Nano
Lett. 12(12), 6414 (2012)

20. A. D. K. Finck, D. J. Van Harlingen, P. K. Mohseni, K.
Jung, and X. Li, Anomalous modulation of a zero-bias
peak in a hybrid nanowire-superconductor device, Phys.
Rev. Lett. 110(12), 126406 (2013)

21. E. J. H. Lee, X. Jiang, M. Houzet, R. Aguado, C. M.
Lieber, and S. De Franceschi, Spin-resolved Andreev
levels and parity crossings in hybrid superconductor-
semiconductor nanostructures, Nat. Nanotechnol. 9(1),
79 (2014)

22. S. Nadj-Perge, I. K. Drozdov, J. Li, H. Chen, S. Jeon,
J. Seo, A. H. MacDonald, B. A. Bernevig, and A.
Yazdani, Observation of Majorana fermions in ferro-
magnetic atomic chains on a superconductor, Science
346(6209), 602 (2014)

137101-6
Qi Zhang and Biao Wu, Front. Phys. 13(2), 137101 (2018)

https://doi.org/10.1038/nphys1380
https://doi.org/10.1038/nphys1380
https://doi.org/10.1070/1063-7869/44/10S/S29
https://doi.org/10.1070/1063-7869/44/10S/S29
https://doi.org/10.1103/PhysRevLett.103.235301
https://doi.org/10.1103/PhysRevLett.103.235301
https://doi.org/10.1103/PhysRevLett.103.235301
https://doi.org/10.1103/PhysRevLett.107.136403
https://doi.org/10.1103/PhysRevLett.107.136403
https://doi.org/10.1103/PhysRevLett.107.136403
https://doi.org/10.1103/PhysRevLett.107.136403
https://doi.org/10.1103/PhysRevB.85.245121
https://doi.org/10.1103/PhysRevB.85.245121
https://doi.org/10.1103/PhysRevB.85.245121
https://doi.org/10.1103/PhysRevB.85.245121
https://doi.org/10.1103/PhysRevX.3.031011
https://doi.org/10.1103/PhysRevX.3.031011
https://doi.org/10.1103/PhysRevX.3.031011
https://doi.org/10.1103/PhysRevA.88.013622
https://doi.org/10.1103/PhysRevA.88.013622
https://doi.org/10.1103/PhysRevA.88.013622
https://doi.org/10.1103/PhysRevA.88.013622
https://doi.org/10.1103/PhysRevB.87.060502
https://doi.org/10.1103/PhysRevB.87.060502
https://doi.org/10.1103/PhysRevB.87.060502
https://doi.org/10.1103/PhysRevB.87.060502
https://doi.org/10.1103/PhysRevLett.111.136402
https://doi.org/10.1103/PhysRevLett.111.136402
https://doi.org/10.1103/PhysRevLett.111.136402
https://doi.org/10.1103/PhysRevLett.112.207203
https://doi.org/10.1103/PhysRevLett.112.207203
https://doi.org/10.1103/PhysRevLett.112.207203
https://doi.org/10.1103/PhysRevLett.112.207203
https://doi.org/10.1103/PhysRevB.86.205135
https://doi.org/10.1103/PhysRevB.86.205135
https://doi.org/10.1103/PhysRevB.86.205135
https://doi.org/10.1140/epjb/e2014-50216-0
https://doi.org/10.1140/epjb/e2014-50216-0
https://doi.org/10.1140/epjb/e2014-50216-0
https://doi.org/10.1140/epjb/e2014-50216-0
https://doi.org/10.1103/PhysRevB.87.060504
https://doi.org/10.1103/PhysRevB.87.060504
https://doi.org/10.1103/PhysRevB.87.060504
https://doi.org/10.1103/PhysRevX.4.021018
https://doi.org/10.1103/PhysRevX.4.021018
https://doi.org/10.1103/PhysRevX.4.021018
https://doi.org/10.1103/PhysRevB.92.165118
https://doi.org/10.1103/PhysRevB.92.165118
https://doi.org/10.1103/PhysRevB.92.165118
https://doi.org/10.1103/PhysRevA.92.053615
https://doi.org/10.1103/PhysRevA.92.053615
https://doi.org/10.1103/PhysRevA.92.053615
https://doi.org/10.1103/PhysRevA.92.053615
https://doi.org/10.1103/PhysRevB.92.224501
https://doi.org/10.1103/PhysRevB.92.224501
https://doi.org/10.1103/PhysRevB.92.224501
https://doi.org/10.1103/PhysRevB.92.224501
https://doi.org/10.1126/science.1222360
https://doi.org/10.1126/science.1222360
https://doi.org/10.1126/science.1222360
https://doi.org/10.1126/science.1222360
https://doi.org/10.1126/science.1222360
https://doi.org/10.1021/nl303758w
https://doi.org/10.1021/nl303758w
https://doi.org/10.1021/nl303758w
https://doi.org/10.1021/nl303758w
https://doi.org/10.1103/PhysRevLett.110.126406
https://doi.org/10.1103/PhysRevLett.110.126406
https://doi.org/10.1103/PhysRevLett.110.126406
https://doi.org/10.1103/PhysRevLett.110.126406
https://doi.org/10.1038/nnano.2013.267
https://doi.org/10.1038/nnano.2013.267
https://doi.org/10.1038/nnano.2013.267
https://doi.org/10.1038/nnano.2013.267
https://doi.org/10.1038/nnano.2013.267
https://doi.org/10.1126/science.1259327
https://doi.org/10.1126/science.1259327
https://doi.org/10.1126/science.1259327
https://doi.org/10.1126/science.1259327
https://doi.org/10.1126/science.1259327


Research article

23. H. H. Sun, K. W. Zhang, L. H. Hu, C. Li, G. Y. Wang,
H. Y. Ma, Z. A. Xu, C. L. Gao, D. D. Guan, Y. Y.
Li, C. H. Liu, D. Qian, Y. Zhou, L. Fu, S. C. Li, F.
C. Zhang, and J. F. Jia, Majorana zero mode detected
with spin selective andreev reflection in the vortex of
a topological superconductor, Phys. Rev. Lett. 116(25),
257003 (2016)

24. A. Zee, Quantum Field Theory in a Nutshell, Princeton:
Princeton University Press, 2010

25. M. Leijnse and K. Flensberg, Introduction to topolog-
ical superconductivity and Majorana fermions, Semi-
cond. Sci. Technol. 27(12), 124003 (2012)

26. A. Das, Y. Ronen, Y. Most, Y. Oreg, M. Heiblum, and
H. Shtrikman, Zero-bias peaks and splitting in an Al-
InAs nanowire topological superconductor as signature
of Majorana fermions, Nat. Phys. 8(12), 887 (2012)

27. L. P. Rokhinson, X. Liu, and J. K. Furdyna, The
fractional a.c. Josephson effect in a semiconductor-
superconductor nanowire as a signature of Majorana
particles, Nat. Phys. 8(11), 795 (2012)

Qi Zhang and Biao Wu, Front. Phys. 13(2), 137101 (2018)
137101-7

https://doi.org/10.1103/PhysRevLett.116.257003
https://doi.org/10.1103/PhysRevLett.116.257003
https://doi.org/10.1103/PhysRevLett.116.257003
https://doi.org/10.1103/PhysRevLett.116.257003
https://doi.org/10.1103/PhysRevLett.116.257003
https://doi.org/10.1103/PhysRevLett.116.257003
https://doi.org/10.1103/PhysRevLett.116.257003
https://doi.org/10.1088/0268-1242/27/12/124003
https://doi.org/10.1088/0268-1242/27/12/124003
https://doi.org/10.1088/0268-1242/27/12/124003
https://doi.org/10.1038/nphys2479
https://doi.org/10.1038/nphys2479
https://doi.org/10.1038/nphys2479
https://doi.org/10.1038/nphys2479
https://doi.org/10.1038/nphys2429
https://doi.org/10.1038/nphys2429
https://doi.org/10.1038/nphys2429
https://doi.org/10.1038/nphys2429

	Introduction
	Majorana fermion in particle physics
	Majorana fermions in solid state systems
	Kitave's superconducting chain
	Majorana edge modes
	Majorana modes in the bulk

	References and notes

