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Strain effect on the instability of island formation
in submonolayer heteroepitaxy
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Abstract – A theoretical model is developed to study the strain effect on the instability of island
formation in submonolayer heteroepitaxy in both thermodynamic and growth kinetic regimes.
By using the linear-stability analysis, the elastic energy change of a circular island is derived.
Combined with a rate equation theory, the interplay between growth kinetics and strain effect
on the shape instability is analyzed and illustrated with the constructed morphological phase
diagrams. Critical island sizes beyond which islands grow unstable are also derived and can be
used to estimate the energy parameters. Well-defined scaling properties are also obtained for
the shape instability.
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Understanding the growth mechanisms in the early
stages of epitaxial growth is crucial for developing
advanced high-quality devices [1–3]. For example, the
mechanism of strain-induced self-organization of nano-
structures in heteroepitaxy has been explored extensively
since it offers a promising route for the fabrication of
optoelectronic devices [4]. While various growth models
have been developed for submonolayer homoepitaxy [1–3],
these models provide very limited understanding for the
growth in heteroepitaxy where strain arising from the
lattice mismatch plays an important role [4]. So far,
submonolayer heteroepitaxy still remains as a poorly
understood subject.
One of key issues in submonolayer heteroepitaxy is

the shape of strained 2-Dimensional (2D) islands. Strain-
induced shape instability during island formation has
been studied experimentally and theoretically [5–10], but
most theoretical studies focused on the thermodynamic
regime [5,9,10]. It has been found that the competition
between strain energy and step free energy leads to a
shape transition from compact to elongated or frac-
tal [5–8]. However, what roles do the growth kinetics play
in the shape instability? How does strain interplay with
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kinetics during island formation? These issues are very
important because the desired surface morphologies can
be obtained via proper manipulation of growth kinetics,
which has been demonstrated in recent studies for the
step bunching instability observed in a strained film
grown on a vicinal surface [11–13]. Unfortunately, these
issues are still not clear in strain-induced shape instability
and no comprehensive model was proposed.
In this letter we develop a comprehensive model to

study the strain effect on the instability of island forma-
tion in heteroepitaxy in both thermodynamic and kinetic
regimes. The elastic energy change is derived analytically
for a strained 2D circular island using the linear-stability
analysis [14]. Combined with a self-consistent rate equa-
tion theory [15], we analyze the shape instability in various
conditions. Morphological phase diagrams are constructed
to illustrate the interplay between growth kinetics and
strain effect on the shape instability, providing a guide for
manipulating growth kinetics in heteroepitaxy to obtain
the desired surface morphologies. The critical island size
beyond which islands grow unstable is derived, which
can be used to estimate the energy parameters of given
systems. More analyses show well-defined scaling proper-
ties in the strain-induced shape instability.
First we consider a circular island with radius R

and height h under isotropic stress on a substrate for
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simplicity. In order to analyze the shape instability,
we examine small perturbations to this circular island.
Here only the shape perturbation is considered [16].
The radius of the perturbed island can be expressed as
r(φ) =R+Ak cos(kφ). Here R is the unperturbed radius,
Ak(�R) is the amplitude of the perturbations, and k is
the wave number of the perturbations. If the perturbation
increases the energy, the island will be stable; otherwise,
it is unstable. We will investigate the energy change of
the island under perturbations.
For a strained island, if there is no dislocation at the

interface, its elastic energy is [17]

Ee =C

∫
d2r

∫
d2r′
Θ(r)Θ(r′)
|r− r′|3 , (1)

where Θ(r) is the step function, which is one, if |r|< r(φ)
and zero, otherwise. The constant C is determined by

C =
Y 2a (1− ν2s )
πYs(1− νa)2h

2f2. (2)

Here Y is Young’s modulus and ν is Poisson’s ratio.
The subscripts s and a represent the substrate and film,
respectively. f = (aa− as)/as is the lattice mismatch with
lattice constants as and aa for the substrate and the film,
respectively. h is the island height. In the submonolayer
growth regime h�R. Here for simplicity, the edge stress
and interfacial stress are neglected in our model [5]. In our
analysis the lattice constants on the fcc(100) surface are
used as the unit length.
Under a small perturbation of Ak, the change of the

elastic energy can be derived as

δEe =−πCA2kα(R, k)/R, (3)

here

α(R, k) = (k2− 1) ln
(
4R

a

)
+1

+

k∑
n=1

[
2n(n− 1)
2k− 2n+1 −

4k2− 1
2n− 1

]
. (4)

Note that the area of the island keeps constant before and
after perturbation. Here a is a cutoff length in the range
of the surface lattice constant.
It is obvious that δEe is positive as k= 1. For other

modes, δEe is positive or negative depending on the island
radius. Figure 1 shows that α is negative when islands
are very small, but becomes positive as the island size
increases. Therefore, as an island is very small, δEe is
positive, so the perturbation increases the elastic energy
of the island, and the island will be stable. Otherwise, the
island will become unstable. This indicates that a critical
island radius exists.
The perturbations also make the periphery length of

the perturbed island longer than that of the circular one,
which attempts to increase the step energy of the island by

δEs = πA
2
k(k

2− 1)γ/(2R), (5)
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Fig. 1: Variation of α with island radius R with different k.

where γ is the step energy per unit length. It is clear that
the change of step energy attempts to stabilize the island
shape.
As a result, the energy change caused by the perturba-

tions is

∆E = δEs+ δEe. (6)

For a given mode k, if ∆E > 0, the circular island is
stable against the perturbation; if ∆E < 0, it is unstable.
As mentioned above, the circular island is always stable
under the perturbation of mode k= 1, so the first unstable
mode is k= 2. We notice that δEe is proportional to
ln(R)/R, while the step energy change δEs ∝ 1/R. When
R is large enough, ∆E is always negative. Therefore, as
∆E(k= 2) = 0, the critical island size can be derived as

Rc =
e5a

4
exp
( γ
2C

)
. (7)

Thus, once the radius of an island exceeds Rc, the
strain will make the island grow unstable. As mentioned
above, the strain-induced shape instability during island
formation has been studied theoretically in the thermo-
dynamic regime, where islands tend to grow along one
direction [5,9].
Equation (7) shows that a larger step energy γ or a

smaller lattice mismatch f leads to bigger stable islands.
If C = 0, Rc will be infinite, which implies that unstrained
circular islands are always stable in the thermodynamic
regime. Note that Rc does not depend on temperature
explicitly. According to eq. (6), the critical island radius
increases with increasing k. This indicates that high-k
modes are stable for very large islands, which is similar
to the step meandering in the step flow growth [18].
The above analysis is for the island formation in

equilibrium conditions. In most epitaxial experiments, the
growth is far from equilibrium. The kinetic effect on island
formation will be important. Next we will investigate the
strain effect on the shape instability in the growth kinetic
regime. Here we examine the time dependence of small
perturbations to a strained 2D circular island R(t) for its
shape stability, which is determined by a relative stability
function ωk, so the radius of the island is replaced by
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r(φ, t) =R(t)+Ak(t)exp(ikφ), where R(t) is the unper-
turbed island radius. To the first order in Ak(t), we have

d

dt

(
Ak

R

)
= ωk

(
Ak

R

)
. (8)

If ωk > 0, the island grows unstable; if ωk < 0, it is stable.
Thus, ωk = 0 defines a critical size. It is clear that once
dR/dt and dAk/dt are known, ωk can be determined.
dR/dt and dAk/dt will be derived in the following in
terms of the adatoms density surrounding the island and
the mass conservation.
Here we consider a standard epitaxial growth including

deposition, adatom diffusion on the substrate, aggregation
to existing islands, and edge diffusion. We also consider
reversible aggregation, where adatoms can overcome an
energy barrier to detach from islands. On the surface, each
island is surrounded by some others, and the environment
is changing with time during growth. In order to describe
the growth properties accurately, a self-consistent rate
equation theory [15] is used to account for the influence of
the environment. In this model, the strain-induced island-
island interaction is not considered [19].
In the steady state, the adatom density n(r, φ)

surrounding the island can be obtained by solving the
diffusion equation [15]

1

r

∂

∂r

[
r
∂n(r, φ)

∂r

]
+
1

r2
∂2n(r, φ)

∂φ2
− ξ−2 [n(r, φ)−n0] = 0.

(9)

Here ξ is the diffusion length and is defined as ξ−2 =
σn0+σav(N +n0) [15]. N is the island density, n0 is the
average adatom density, and the average capture number
σav measures the rate of islands capturing the adatoms on
the surface. The solution to the above equation is

n(r, φ) = n0+B0K0

(
r

ξ

)
+BkKk

(
r

ξ

)
exp(ikφ), (10)

where Kk(k= 0, 1, 2, . . .) is the modified Bessel function
of order k. Bk(k= 0, 1, 2, . . .) is a coefficient which can be
determined by the boundary condition to eq. (9) at the
island edge where the mass should be balanced,

∂n(r, φ)

∂r
|s = β [n(r, φ)|s−n0(r, φ)|s] . (11)

Here s denotes the boundary of the island. β is a step
kinetic coefficient which is related to the attachment
barrier as adatoms aggregate to islands [15]. We assume
no attachment barrier. n0(r, φ)|s is the equilibrium adatom
density of the island.
On the other hand, doing the Taylor expansion, the

adatom density n(r, φ) around the island can be written as

n(r, φ)|s ≈ n(r, φ)|s+Ak exp (ikφ) ∂n(r, φ)
∂r

|s, (12)

with first-order approximation.

For n0(r, φ)|s, according to the Gibbs-Thomson relation,
it can be written as [14]

n0(r, φ)|s ≈ neq
[
1+
Γ

R
+
Γ

R2
(k2− 1)Ak exp(ikφ)

]
, (13)

in the first order of Ak. Here neq is the equilibrium adatom
density of an infinite island, and Γ= γΩ/(kBT ). Ω is the
atomic volume.
Substituting eq. (12) and eq. (13) into the boundary

condition eq. (11), then making use of eq. (10), we can
determine the coefficients B0 and Bk in eq. (10).
The rate of growth of the island is determined by the

equation of mass conservation at the interface. With the
considered perturbation the mass conservation equation
can be written as [14]

dR

dt
+
dAk
dt
exp (ikφ) = jΩ. (14)

Thus, dR/dt and dAk/dt can be determined when the
flux j is known. In fact, the flux j consists of two parts,
the diffusive current of adatoms aggregating to islands as
shown in eq. (11) and the diffusive current along island
edges which is [20]

je =Dene∇δµ/(kBT ), (15)

where δµ(φ) = (Ω/R2)[γ(k2− 1)− 2Cα(R, k)]Akcos(kφ).
According to eq. (14) and eq. (8), finally one can obtain

ωk = ω
1
k +ω

2
k +ω

3
k −
kFΩ

2
, (16)

in which

ω1k = DtΩξ
−2
[
n0−neq

(
1+
γ− 2C ln 4R

e2a

kBTR

)]

×K1(
R
ξ
)

K0(
R
ξ
)

[
ξ(k− 2)
R

+
Kk−1(Rξ )

Kk(
R
ξ
)
− K0(

R
ξ
)

K1(
R
ξ
)

]
,

ω2k =
DtneqΩ

kBTR2
[
2Cα− γ(k2− 1)]

(
Kk−1(Rξ )

ξKk(
R
ξ
)
+
k

R

)
,

ω3k =
2DeneΩCαk

2

kBTR4
− DeneγΩk

2(k2− 1)
kBTR4

.

Here F is the deposition rate, T is the substrate
temperature, kB is Boltzmann’s constant, and ne is the
number of atoms per unit length along the island edge.
Dt and De are the diffusion rates on the substrate and
along the island edge, respectively. In eq. (16), ω1k is
related to the instability caused by terrace diffusion.
The second and third terms, ω2k and ω

3
k, represent the

competition between strain and step energy on the shape
instability in the attachment-detachment–limited and
edge-diffusion–limited growth regimes, respectively. The
last term corresponds to the deposition on top of the

16001-p3



Maozhi Li et al.

island, which can be neglected in further analysis. Note
that for an irreversible homoepitaxy, eq. (16) recovers
the equation derived in ref. [21]. This indicates that our
theoretical model is more general.
For a compact island, R/ξ is a simple function of θ,

here θ is the coverage [15]. Typically ξ�R, and since neq
is very small compared to n0, eq. (16) can be simplified as

ωk ≈ g1(θ)FΩ
NR2

(k− 2)+ 2DeneΩCαk
2

kBTR4

+
2DtneqΩCαk

kBTR3
g2(θ)− DeneΩγk

2

kBTR4
(k2− 1)

−DtneqΩγk
kBTR3

(k2− 1)g3(θ). (17)

In the above equation, the first three terms are related
to the deposition and strain effect which attempt to
destabilize the island growth. The last two terms are
related to the step energy which attempts to stabilize the
island growth. Therefore, eq. (17) can be used to analyze
the shape instability of an island caused by the interaction
of deposition, strain effect, step energy, and surface kinetic
processes. Here gi(θ) (i= 1,2,3) are functions of θ and
independent of system properties (C, γ, and α) and growth
kinetics (De, Dt, F , neq).
According to eq. (17), deposition and strain may stabi-

lize or destabilize the island growth, depending on the
island radius and the perturbation modes (different k).
However, edge diffusion and detachment processes in the
last two terms attempt to decrease the step energy and
stabilize the island growth. Therefore, the stability of the
island growth depends on the perturbation modes. For
the mode of k= 1, the first two terms are negative and the
last two terms are zero, so ωk < 0, and the island growth
is always stable. In this case, both deposition and strain
effect stabilize the island growth. For the modes of k� 3,
deposition starts to destabilize the island growth, since
more deposited atoms prefer to aggregate to the corners or
protrusions of the existing larger islands [22], leading the
island to grow unstable. Here the case of k= 3 and k= 2
for deposition and strain, respectively, will be discussed.
For the last two terms, k= 2 is used. In this case, the
deposition flux causes the diffusion instability of the island
shapes, and the strain effect destabilizes the island growth
by forcing adatoms to diffuse to the less strained areas via
edge diffusion or detachment processes.
As mentioned above, both deposition and strain can

lead to island shape instability. But how do they interplay
with each other? When deposition dominates the strain
effect to destabilize the island growth, that is, the first
term in eq. (17) is much larger than the second and third
terms, we have

F

N
� 24DeneC
kBTR2

ln

(
4R

e5a

)
(18)

and
F

N
� 12DtneqC

kBTR
ln

(
4R

e5a

)
(19)
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Fig. 2: Phase diagrams for the interplay between deposition
and strain effect on the island shape instability. The shape
is stabilized by edge diffusion (a) and attachment-detachment
of atoms (b), respectively. Here T = 300K, R= 50, γ = 0.1 eV,
Dene = 10

5/s, and Dtneq = 10
4/s are chosen.

for edge diffusion and attachment-detachment processes
as dominated stabilizing effects, respectively. The shape
instability would be mainly caused by deposition in
heteroepitaxial growth. In the other extreme, strain will
dominate the shape instability.
Figure 2 shows the phase diagrams for the interplay

between deposition and strain effect on the shape stability
of an island with R= 50 (unit length = 1). The straight
lines in fig. 2 divide the diagrams into two parts. In
the region far above the lines where the deposition rate
is relatively high, the island shape instability is mainly
driven by deposition. In the region far below the lines,
however, strain will dominate the shape instability, which
corresponds to the regime of thermodynamic instability.
But in the region close to the lines, both driving forces
coexist, and may cause shape instability. For a given
heteroepitaxial system, one can adjust the deposition rate
to get stable compact islands, and further control the
surface morphologies according to the interplay between
growth kinetics and strain.
As mentioned above, however, for a specific system in

certain growth conditions, islands may not grow unstable
until their sizes exceed a critical value. According to
eq. (17), in the deposition-dominated regime, a critical
island radius can be derived as follows when edge diffusion
dominates the stabilizing effect:

Rc1 ≈
(
12Deneγ

kBTF/N

)1/2
. (20)

Thus, the critical island size can be predicted based
on the system properties and experimental conditions.
On the other hand, according to De ∼ exp(−Ee/kBT ),
the edge diffusion barrier Ee can be estimated once the
critical size is measured. We notice that a formula similar
to eq. (20) was used to estimate the edge diffusion barriers
in Ag/Pt(111) and Ag/Ag(111) systems [23]. However,
eq. (20) contains more information which can be obtained
from experiments. Thus, the prediction or estimate
from eq. (20) should be more accurate [23,24]. This also
confirms the validity and consistency of our model.
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Fig. 3: Phase diagrams of the stable- and unstable-island shape
plotted on the (F/N , R)-plane as deposition controls the shape
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Fig. 4: Phase diagram of the stable- and unstable-island
shape plotted on the (C,R)-plane as strain controls the shape
instability.

When the attachment-detachment process dominates
the stabilizing effect, the critical island radius is

Rc2 ≈
6Dtneqγ

kBTF/N
. (21)

One could also use the above expression to estimate the
detachment barrier. But usually the edge diffusion barrier
is much lower than the detachment barrier. Such growth
mode might not be observed in epitaxial experiments.
Figure 3 shows the dependence of the critical island

radius on the deposition flux when deposition dominates
the island shape instability. In each phase diagram there
are two growth regimes: unstable and stable. Below the
lines, islands will grow stable and compact. Above the
lines, however, islands will grow unstable. According to
the phase diagrams of fig. 2 and fig. 3, one could adjust the
growth kinetics in experiments to manipulate the surface
morphologies.
When the deposition rate is very small and the deposi-

tion effect on the island shape instability can be negligible,
the island growth goes back to the thermodynamic regime.
Therefore, eq. (7) can be recovered from eq. (17). This also
demonstrates the consistency and validity of our theoret-
ical model. Figure 4 shows the phase diagram for shape
instability in the thermodynamic regime.
From eqs. (20) and (21) we can predict the scal-

ing behavior of shape instability in the submonolayer
heteroepitaxy. With the relation R∼ (Dt/F )−i/[2(i+2)]

(i is the critical nucleus) [1–3], scaling forms, De/Dt ∼
(Dt/F )

(i−2)/(i+2) and Ddet/Dt ∼ (Dt/F )(i−4)/[2(i+2)], can
be derived for edge diffusion rate and detachment rate
with deposition rate, respectively. The predicted scaling
properties are consistent with previous results [21,25].
Here Ddet ≈Dtneqγ/(kBT ).
In summary, we developed a theoretical model to study

the strain effect on shape instability of islands in both ther-
modynamic and kinetic regimes in heteroepitaxial growth.
Our comprehensive model study provides new insight into
the interplay between growth kinetics and strain effect
in heteroepitaxy. The constructed phase diagrams and
related derivations show how to obtain desired morpholo-
gies via proper manipulation of the growth kinetics in
heteroepitaxy.
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