
PHYSICAL REVIEW E, VOLUME 65, 056220
Quantum chaos in a ripple billiard
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We study the quantum chaos of a ripple billiard that has sinusoidal walls. We show that this type of ripple
billiard has a Hamiltonian matrix that can be found exactly in terms of elementary functions. This feature
greatly improves computation efficiency; a complete set of eigenstates from the ground state up to the 10 000th
level can be calculated simultaneously. Nearest neighbor spacing of energy levels of a chaotic ripple billiard
shows a Brody distribution~with a confidence level of 99% byx2 test! instead of the Gaussian orthogonal
ensemble prediction. For high energy levels we observe scars and interesting patterns that have no resemblance
to classical periodic orbits. Momentum localization of scarred eigenstates is also observed. We compare the
scar associated localization with quantum dynamical Anderson localization by drawing the wave function
distribution on basis state coefficients.
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I. INTRODUCTION

The search for the signatures of chaos in atomic and
soscopic systems has attracted increasing interest in re
years@1–11# because underlying classical chaos appear
give rise to universal behavior of many quantum syste
Recently, billiards of arbitrary shape have been created w
lasers and cold atoms, and this opens a new testing gro
for such systems@12#.

One of the most studied properties for bounded quan
systems is the statistics of the distribution of nearest ne
bor energy level spacings. This statistics appears to dep
only on general space-time symmetries@6–10# if the under-
lying classical dynamics is chaotic. However, many of t
systems studied so far, experimentally or numerically, h
insufficient data on energy levels to determine the distri
tion of level spacings with a large confidence level@8#.

In this paper, we study properties of the ripple billiar
one or two of whose walls are sinusoidal~see Fig. 1!. As the
amplitude of the ripple is increased, its classical dynam
transits from integrable, to mixed, to fully chaotic, and th
to mixed behavior again. As we shall show, the ripple billia
has a very useful feature that the elements of its Hamilton
matrix can be obtained analytically in terms of element
functions. This greatly increases the computation efficien
and allows us to obtain up to 10 000 contiguous eigenst
~approximately an order of magnitude higher than many c
otic systems studied to date!. This large number of energ
levels will allow us to examine the spectral statistics w
greater confidence level than has been possible in most
vious studies.

For a spinless particle in a two-dimensional chaotic b
liard with time-reversal symmetry, the distribution of neare
neighbor level spacings~with spatial parities separated! is
expected to obey approximately a Wigner distribution,
more precisely, the prediction of the Gaussian orthogo
ensemble~GOE! @13# that gives a Brody distribution func
tion
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with a Brody parameterb50.953, instead ofb51.0 as
given by Wigner distribution. In Eq.~1!, D is the mean level
spacing andA5a(11b) anda5@G(21b)/(21b)#11b.

As was pointed out by Grafet al. @9#, in a real quantum
chaotic system like a billiard, the existence of margina
stable ‘‘bouncing ball states’’@9# can destroy the fit to the
GOE prediction. As will be shown in this paper, this can
seen best by using ax2 test @14# that tells us quantitatively
how well a given set of data fits an expected distribution

Scars are considered to be one of the most surpris
properties of quantum systems whose underlying class
dynamics is chaotic. An experimental observation of such
effect in a true quantum system has long been considere
a conceptual breakthrough@11#. In the ripple billiard system
considered here, the fact that we have an analytic expres
for the Hamiltonian matrix allows us to investigate scar wa
functions and properties up to very high energy levels. B
side the well known feature of scarred wave functions t
resemble a classical particle traveling along periodic orb
we notice that scarred states also show other classical be

FIG. 1. Ripple billiard.
©2002 The American Physical Society20-1
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iors. From Husimi plots@5# and analysis in two-dimensiona
momentum space, strong localization of the momentum
tribution for a scarred eigenstate is observed.

We compare the scar associated localization with
well-known quantum dynamical Anderson localizatio
which has been observed in many quantum chaotic syst
such as ad-kicked rotor@12# and various types of billiards
@15,16#. We notice that they are two different types of loca
izations. Quantum dynamical localization basically cor
sponds to a regime among all energy levels~above the per-
turbative regime yet below the ergodic regime!, while the
scar associated localization corresponds to that partic
scarred eigenstate. We will make this clear by drawing
wave function distribution on basis coefficients.

Interference between different scarred orbits is also
served in wave functions of the ripple billiard, and may ev
form new wave function patterns, such as the hexagon
circle-like structures shown in this paper.

The calculation of the Hamiltonian matrix of the ripp
billiard will be given in the Appendices. In Sec. II, we intro
duce the ripple billiard model. In Sec. III, we examine t
statistical properties of the energy eigenvalues. In Sec.
we analyze scarred eigenstates and associated localiza
Section V shows some pattern formations in the ripple
liard. Finally in Sec. VI, we make some concluding remar

II. RIPPLE BILLIARD MODEL

The right wall of the ripple billiard, shown in Fig. 1, ha
the form

f ~y!5b2a cosS 2py

L D , ~2!

wherea is the ripple amplitude in units of the ripple heig
L0. The heightL51.0 in this paper~see Appendix A for a
discussion of units!. Whena50, the billiard is a rectangle
with width 2b ~similarly, in units ofL0). Classically, as the
ripple amplitudea increases from zero, the ripple billiar
changes from an integrable system to a mixed, and then
fully chaotic system, and for very largea it becomes mixed
again. This can be illustrated easily by drawing the Poinc
surface of section when considering a classical particle
liding with the billiard boundaries.

III. ENERGY LEVEL STATISTICS

Although a direct counterpart of the classical Poinc
surface of section is not available quantum mechanica
depending on the degree of chaos in the underlying class
dynamics, quantum systems do show different featu
Among them the energy level statistics has been stud
most extensively. Nowadays the universal statistical prop
ties have been widely accepted as important signature
quantum chaos, and this has been verified in experim
@9–11,17# as well as various numerical simulations@8–10#.

However, due to the limited number of available eige
states, in many cases the data can only show a qualita
agreement with the random matrix theory~RMT! prediction,
while quantitative comparison according to ax2 test @14#
05622
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generally does not give a satisfying confidence level@8#. In
addition, other factors affecting the dynamics of a chao
system may also cause deviations from GOE predictio
One example, as shown by Grafet al. in a quarter stadium
billiard, is the existence of so called bouncing ball stat
whose wave functions resemble a particle bouncing perp
dicularly off the straight sections of the billiard@9#, may
cause the deviation of nearest neighbor level spacings f
RMT behavior. Here with our ripple billiard we can examin
this effect quantitatively. We find that the types of stat
having the greatest affect on the statistics for the ripple
liard are the vertically concentrated eigenstates~associated
with a vertical marginally stable orbit! and the horizontally
concentrated eigenstates~associated with a horizontal stab
orbit!. Figure 2~a! shows the distribution of nearest neighb
spacings for 1000 eigenstates~corresponding to the level
between 1000th and 2000th levels!. The distribution looks
basically ‘‘GOE-like’’ but comparison with the GOE predic
tion ~the solid curve in the figure! gives x17

2 516.03, corre-
sponding to a low confidence level of 45.11%. If we extra
the vertical bouncing ball states~based on a Bohr-
Sommerfeld-like quantization criteria@18#!, the new distribu-
tion has x17

2 510.92 and the confidence level increases
81.44%. If we further extract the horizontal states@both are
sketched in the inset of Fig. 2~b!#, the confidence level in-
creases dramatically to 99.08%, as shown in Fig. 2~b!.

Instead of the GOE prediction, Grafet al.also pointed out

FIG. 2. ~a! x2 test of the GOE prediction~the solid curve is the
Brody distribution for b50.953) for the 1000th–2000th levels
x17

2 516.03 corresponds to a low confidence level of 45.11%.~b!
With vertically and horizontally concentrated states~sketched in the
inset! extracted.x17

2 55.73, and the confidence level is 99.08%
Even-even modes are used anda50.05, b50.5.
0-2
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QUANTUM CHAOS IN A RIPPLE BILLIARD PHYSICAL REVIEW E 65 056220
@9# that the full distribution of nearest neighbor spacin
~without states extraction! of a quarter stadium billiard can
be best fitted by a Brody distribution@1# with Brody param-
eter much less than 1.0. This claim can also be examined
our ripple billiard with ax2 test. For the 1000 eigenstate
mentioned above, the distribution of nearest neighbor sp
ings agrees with the Brody distribution~by choosing Brody
parameterb of 0.806! with a good confidence level o
96.30% @Fig. 3~a!#. Since the Hamiltonian matrix of ou
ripple billiard can be obtained analytically, we extended o
matrix size to 10 000 and did the statistics using the fi
7 000 levels above the ground state~to guarantee the accu
racy of energy eigenvalues obtained!, the distribution of
nearest neighbor level spacings shows an excellent ag
ment with the Brody distribution@Fig. 3~b!#, where the con-
fidence level is 99.58%.

In our calculations here we separated the parities.
data used in Figs. 2 and 3 are even-even modes.
eigenenergies were unfolded using the same method as
plied in Ref.@17#. The transform of the original energy spe
trum $Ei% to the unfolded spectrum$Ēi% can be written

Ēi 115Ēi1~2l 11!
Ei 112Ei

Ej 2112Ej 1

, ~3!

j 15max~1,i 2l !, j 25min~n21,i 1l !.

FIG. 3. x2 test of the Brody distribution with Brody paramete
of 0.806.~a! The statistics of 1000 eigenstates givesx17

2 57.47~cor-
responding to a confidence level of 96.30%);~b! the statistics of
7000 states givesx17

2 55.00~corresponding to a confidence level
99.58%).
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The parameterl we used is 137 for 1 000 levels, and 442 f
7 000 levels, respectively.

IV. SCARS

One of the most interesting phenomenon that occurs
quantum chaotic systems is the observation of scars.
scarred eigenstates, the probability amplitude of an eig
state is concentrated along unstable periodic orbits instea
being randomly distributed in the cavity@20,23#. Scars were
originally observed by McDonald@19# for numerical simula-
tions of a stadium billiard~which is now considered as
paradigm model in quantum chaology! but did not catch
much attention until the extensive studies of Heller@4#. We
are going to see in this section some new features in
ripple billiard by examining the scarred states. As seen
Fig. 4, the probability densities of some eigenstates are
hanced along the path of classical periodic orbits. These
patterns look quite ‘‘clean’’~the probabilities in regions othe
than the orbits are fairly low!. The scarring pattern in each o
the states in Fig. 4 is not limited to that particular eigensta
instead it reappears again and again as energy increase

Besides wave function enhancement along classical p
odic orbits, scarred states show other classical behaviors.
low we compare the Husimi plot@21,22# of a scarred state
with its classical Poincare surface of section. The Poinc
section @the position axis is chosen as the dashed line
shown in Fig. 5~a!, which has a small shift from the centra
vertical line# in this case consists of two dots as shown
Fig. 5~b!. This agrees well with the quantum Husimi plot a
shown in Fig. 5~c!. ~For the Husimi plots, the position coor
dinates as defined in the Husimi function are also cho
along the dashed line in Fig. 5~a!. A more detailed descrip-
tion for making the Husimi plots is given in Appendix B.!

To further investigate the scarred eigenstate, we do
analysis of the wave function distribution in two-dimension
momentum space. In Fig. 6, we find the momentum distri
tion for this scarred state is highly localized in four sm
regions. Now if we view the energy of the quantum eige
state,Eq , as the energy of a classical particle,Ec , the mag-
nitude of momentumuPu of the particle is thenAEc ~in units

FIG. 4. Plots of three energy eigenstates that are scarred.
responding periodic orbits are plotted above.~a! The 1028th state,
~b! 531st state, and~c! 539th state.~b! involves one orbit and its
horizontal reflection, while~c! involves three separate orbits, i
fact, they are the superpositions of the orbits from~a! and ~b!.
Parameters areb50.5, a50.02; even-even modes are used.
0-3
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WENJUN LI, L. E. REICHL, AND BIAO WU PHYSICAL REVIEW E65 056220
of \/L0). The path of this periodic orbit makes an angleu
with respect to the horizontal axis@see Fig. 5~a!#. Thex and
y components of momentum are6uPucosu and 6uPusinu,
respectively. The momentum values derivedclassically in
this way match exactly with those for the quantum mom
tum localizations in Fig. 6. This correspondence illustra
the classical particle featureof scarred states.

A. Quantum dynamical Anderson localization

From the above momentum localization of scarred sta
it is natural to ask whether this localization is related
quantum dynamical localization~dynamical Anderson local
ization!. Quantum dynamical localization shows a fund
mental difference between classical and quantum mecha
This can be seen from the diffusion behavior. For exam

FIG. 5. The Husimi plot of the scarred state of Fig. 4~a!. ~a! is a
corresponding classical ripple billiard, and~b! shows the Poincare
surface of section@with the dashed line in~a! as the coordinate axis#
associated with this periodic orbit, which in this case includes o
two dots. Plot range for the coordinate is from 0 toL, and for the
conjugate momentum is from 0 toAE. The eigenenergyE for this
scarred state is 5228.87~in units of p2\2/2meL0

2).

FIG. 6. Momentum localization of the scarred eigenstate in F
4~a!. The locations of the four small regions can be classically p
dicted. Plot range is from2AE to AE in both directions.
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for a classical chaoticd-kicked rotor @12#, the change of
energy with respect to the number of kicks behaves dif
sively. However, for the quantum counterpart of this syste
energy diffusion is suppressed due to quantum interfere
between eigenstates, and a wave function can be localize
some basis states as observed numerically@1# and experi-
mentally@12#. This is known as quantum dynamical localiz
tion, or dynamical Anderson localization due to its analo
to the Anderson localization in disordered systems.

Quantum dynamical localization was also observed in
liard systems, for example, in a chaotic Bunimovich stadi
billiard @15# and circular billiard with rough boundaries@16#.
The energy levels from low to high energies can be divid
into three regimes, namely, perturbative, localized, and
godic, respectively. In the ergodic regime, a wave funct
has its support almost homogeneously on all basis state~in
both billiard cases studied@15,16#, the angular momentum
basis was used!. In the localized regime, the wave functio
distribution is generally logarithmically localized on the b
sis states. The location of the three regimes depends on
billiard parameters. A given energy eigenstate, which
known to be ergodic at parameter, saya1, may fall into the
localized regime at a smaller parametera2 ~eventhougha2
also corresponds to full chaos classically!.

For our ripple billiard, instead of choosing angular m
mentum states as the expansion basis, we are going to i
duce a different approach that is very suitable for the rip
billiard. As shown in great detail in the Appendices, we ma
a coordinate transformation which can convert the ripple
liard into a rectangular billiard@from real (x,y) space to
(u,v) space# . In the rectangular (u,v) billiard, the l th
eigenstate wave function can be written as

f l 5 (
m51

`

(
n51

`

Bmn
l wmn~u,v !, ~4!

where the functionswmn(u,v) are for an orthonormal basi
@see Eq.~A6!#. In this basis, we can see quantum dynami
localization in the ripple billiard. For any ripple amplitudea,
the wave function distribution on basis coefficientsBmn be-
comes increasingly homogeneous for high energy levels

It is interesting to note that in two-dimensional (m,n)
space, the distribution ofBmn is mainly concentrated along
curve, where the basis stateswmn with (m,n) values on the
curve have the same energy as that eigenstate. This c
approximately satisfies the equation,

m21n25E,

whereE is the energy. This equation defines a quarter o
circle with positivem’s andn’s @in the discussion below we
will use angle a to denote the point (m,n), with tana
5n/m#.

Figure 7 shows the distribution of values ofBmn along
this quarter circle for the 1028th eigenstate fora50.09 and
0.02. It clearly shows that fora50.09, the distribution of
values ofBmn is roughly homogeneous~in the ergodic re-
gime for thisa), while for a50.02, it is logarithmically lo-
calized~in the localized regime for thisa).

y

.
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B. Scarring localization

In Fig. 6 we saw that the scarred 1028th eigenstate
localized in momentum. The localization associated w
scars is different from the dynamical localization discuss
in the preceding section. It holds for single isolated eig
states, while dynamical localization occurs on a continu
range of energy levels, no matter if they are scarred or n

Below we show the localization associated with a scar
drawing the distribution ofBmn in two-dimensional basis
state coefficient space. We compare the scarred 10
eigenstate@see Fig. 4~a!# and an unscarred~the 1025th!
eigenstate, whose wave function looks quite random~see
Fig. 8!. Figure 9 shows the distribution ofBmn for the 1025th
eigenstate. In this figure, we do not plot values ofBmn that
are less than 10210. In Fig. 9, as we just mentioned in th
preceding section, the coefficients are distributed ma
along the ‘‘quarter circle.’’ Here it is marked byB. Starting
from the points on curveB, there are also manytails extend-
ing outward. We denote these tails byA.

Now we take a look at the nearby 1028th scarred eig
states@Fig. 4~a!#. In Fig. 10 we again see that the coefficien
are mainly distributed along the quarter circleB and we see
also the tail linesA. They roughly cross at a point, sayO.
Nevertheless, the distribution, in particular for the tail line
is much more narrowed~more closely localized to pointO).
The location ofO can be easily understood. Its associa
basis state~with this specificm andn value! corresponds to
an ideal particle moving along a path that the scarred s
follows as shown in Fig. 4~a!. Since the scarring pattern i

FIG. 7. Comparison of basis coefficient distribution for t
1028th eigenstate.Bmn is the wave function coefficient, withm, n
characterizing the basis state in the transformed (u,v) box as de-
scribed in text. Anglea measures the (m,n) values, tana5n/m.
~a! ergodic case with ripple amplitudea50.09, ~b! localized case
with a50.02. Other parameters are same as in Fig. 4.
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not really a geometry path, the coefficient distribution is n
an isolated peak atO.

Comparing Figs. 9 and 10, we find that a more localiz
distribution ofBmn in two-dimensional coefficient space im
plies the existence of scarring effect in coordinate spa
This feature is verified for other energy levels as well. Li
in the coordinate space a scarring pattern can repeat itse
the energy changes, the corresponding localization beha
of Bmn distribution also reappears as expected.

FIG. 8. The 1025th eigenstate as an example of an unsca
eigenstate. Same parameters as Fig. 4.

FIG. 9. The basis coefficient distribution for the unscarr
1025th eigenstate.
0-5
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V. PATTERN FORMATION

The scarred state shown in Figs. 4~c! involves the super-
position of orbits in Figs. 4~a! and 4~b!. The superposition
and interference of multiple scar orbits can result in n
patterns that may not seem to follow a classical orbit, like
hexagon pattern shown in Fig. 11. The vertical and horiz
tal orbits interact when they cross each other and orga
themselves to form a local hexagon structure.~In this figure,
in order to better show this pattern, we extend the rip
length and show one half of the wave function. The Ham
tonian matrix can be derived similarly with slight modific
tions.! This pattern also repeats itself as we vary the ene
If we change the shape of our ripple by a small amount,
pattern still remains robust. For example, Fig. 11 is the 55
eigenstates fora50.05, and we find that the 554th eigensta
for a50.045 anda50.0475 also have the same hexag
pattern. Fora50.0525, this pattern shifts in energy to th
562nd eigenstate, while fora50.0550, the 544th eigensta
shows this pattern.

It is interesting that this hexagon structure looks qu
similar to the pattern formation in classical dissipative no
linear systems@24#, eventhough their underlying mechani
are totally different. In the classical experiments@24#, be-
sides the hexagon structure, another fundamental pattern

FIG. 10. The basis coefficient localization for the scarred 102
eigenstate@Fig. 4~a!#. The central peak is at pointO, which has
(m,n) values that correspond to a classical particle carrying
energy of this eigenstate and undergoing the scarring orbit.
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served was circles. In fact we also find circlelike patterns
our ripple billiard, such as the example shown in Fig. 12

VI. CONCLUSIONS

In this paper, we have shown that a ripple billiard has
analytic Hamiltonian matrix and this fact assists us in obta
ing a complete set and large number of eigenstates for
tistical studies as well as in looking for features associa
with very high energies, such as the scarring effect and
correspondence between quantum and classical systems
numerical results show clearly the deviation of near

h

e

FIG. 11. Hexagon pattern formation in a ripple billiard. Ripp
magnitudea is 0.05 andb51.0. The ripple length is doubled an
only one half of the wave function is plotted. This is the 554
eigenstate~odd-odd modes are used!.

FIG. 12. Circlelike pattern formation in a ripple billiard. Sam
parameters as in Fig. 11 excepta50.0525. This is the 546th eigen
state.
0-6
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QUANTUM CHAOS IN A RIPPLE BILLIARD PHYSICAL REVIEW E 65 056220
neighbor spacings of energy eigenvalues of a chaotic rip
billiard from the GOE prediction. According to the Husim
plots and analysis in two-dimensional momentum spac
strong momentum localization is observed for a scarred s
We compare the localization behavior of a scar with quant
dynamical Anderson localization, by analyzing the wa
function distribution on a basis set. We also show two typi
patterns in the ripple billiard eigenstates, the hexagon and
circlelike structures.
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APPENDIX A: THE HAMILTONIAN MATRIX FOR THE
RIPPLE BILLIARD

The stationary Schro¨dinger equation of a two-dimensiona
billiard is

2
\2

2me
S ]2

]x2
1

]2

]y2D cn~x,y!5Encn~x,y!, ~A1!

where the wave functioncn(x,y) vanishes on the walls o
the billiard ~shown in Fig. 1!. The difficulty in solving Eq.
~A1! lies in how to deal with the curved boundaries th
control all the physics of the billiard. Our method is
straighten the boundaries with a coordinate transforma
@5,6#, then expandcn in terms of a chosen basis that satisfi
the boundary condition automatically.

The Schro¨dinger equation~A1! can be made unitless b
choosing units as follows; length is taken in units ofL0 ~the
height of the billiard has to be specified! so thatx5x8L0 and
energy in units of e0, so that En5En8e0, where e0

5\2/2meL0
2. For example, ifL0561.7 nm, the units of en

ergy e050.01 meV. Equation~A1! then becomes

2S ]2

]x82
1

]2

]y82
D cn~x,y!5En8cn~x,y!. ~A2!

The energy units used in the figures of this paper, in fa
have an additional multiplying factor ofp2 for the conve-
nience of computing. In the subsequent equations we d
the superscript (8) from x8, y8, andEn8 .

The straightening of the boundaries is done by introd
ing a pair of curvilinear coordinates (u, v) with

u5
x

2 f ~y!
, v5y. ~A3!

In terms of coordinates (u,v), the ripple billiard is turned
into a square billiard, and the Schro¨dinger equation become
05622
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2S h1

]2

]u2
1h2

]2

]u]v
1h3

]

]u
1

]2

]v2D fn~u,v !5Enfn~u,v !,

~A4!

where

h15
1

4 f 2
1S f 8

f D 2

u2,

h252
2 f 8

f
u,

h352S f 8

f D 2

u2
f 9

f
u. ~A5!

Equation~A4! can be viewed as the Schro¨dinger equation
in a curved space. In other words, the ripple billiard
equivalent to a square billiard in a curved space.

The choice of the basis states is now obvious; they ar

wmn~u,v !5A 2

f ~v !
sinFmpS u1

1

2D Gsin~npv !, ~A6!

which automatically satisfy the boundary conditions atu5
61/2, v50,1. It is easy to verify that they obey the follow
ing orthonormal relation,

E E wmn* ~u,v !wmn~u,v !
]~x,y!

]~u,v !
dudv5dmm8dnn8 ,

~A7!

where

]~x,y!

]~u,v !
52 f ~v !. ~A8!

With the expansion

f l 5 (
m51

`

(
n51

`

Bmn
l wmn~u,v !, ~A9!

Eq. ~A4! is transformed to a matrix problem,

(
m51

`

(
n51

`

Hmnm8n8Bm8n8
l

5El Bmn
l , ~A10!

where the Hamiltonian matrix includes four parts

H5H01H11H21H3 . ~A11!

Their matrix elements are

~H0!m8n8mn5dm8mS n2p2dn8n2
1

4
Jn8n

5
2

n8p

2
Jn8n

2

1
np

2
Jn8n

2 D , ~A12!
0-7
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~H1!m8n8mn5
m2p2

4
dm8mJn8n

4
1m2p2

3~Km82m
2

2Km81m
2

!Jn8n
5 , ~A13!

~H2!m8n8mn5mp~Km81m
1

1Km82m
1

!~2Jn8n
5

12npJn8n
2

!,
~A14!

~H3!m8n8mn5mp~Km81m
1

1Km82m
1

!~Jn8n
3

22Jn8n
5

!,
~A15!

where the integrals are defined below:

Kn
15E

21/2

1/2

duusinFnpS u1
1

2D G , ~A16!

Kn
25E

21/2

1/2

duu2 cosFnpS u1
1

2D G , ~A17!

I n
15E

0

1

dx
cosn px

b2acos~2px!
, ~A18!

I n
25E

0

1

dx
cosnpx

@b2a cos~2px!#2
, ~A19!

Jmm8
2

5E
0

1

dx
2 sin~mpx!cos~m8px! f 8~x!

f ~x!

5pa~ I m1m822
1

2I m1m812
1

1I m2m822
1

2I m2m812
1

!,

~A20!

Jmm8
3

5E
0

1

dx
2 sin~mpx!cos~m8px! f 9~x!

f ~x!

52p2a~ I m2m812
1

1I m2m822
1

2I m1m812
1

2I m1m822
1

!, ~A21!

Jmm8
4

5E
0

1

dx
2 sin~mpx!sin~m8px!

f 2~x!

5I m2m8
2

2I m1m8
2 , ~A22!

Jmm8
5

5E
0

1

dx
2 sin~mpx!sin~m8px! f 82~x!

f 2~x!

52p2a2F I m2m8
2

2I m1m8
2

2
1

2
~ I m2m814

2

1I m2m824
2

2I m1m814
2

2I m1m824
2

!G . ~A23!

The integralsKn
1 andKn

2 in the above equations can be eas
obtained:
05622
Kn
15H 0, when n50

2
~21!n11

2np
, when nÞ0,

~A24!

Kn
25H 1/12, when n50

~21!n11

~np!2
, when nÞ0.

~A25!

I n
1 and I n

2 can be derived with the residue theorem. Aft
some algebra, we have

I n
15H 0, whenn is odd

1

Ab22a2 S b2Ab22a2

a D n/2

, whenn is even.

~A26!

I n
252

]

]b
I n

15
b1~n/2!Ab22a2

b22a2
I n

1 . ~A27!

So, eventually every element of the Hamiltonian matrix
expressed in terms of elementary functions. This increa
the computation efficiency remarkably and allows us
study large number of eigenstates of the ripple billiard. N
that similar transformations like Eq.~A3! can be applied to
straighten billiards of other shapes. However, the sinuso
boundary may be the only one where the Hamiltonian ma
elements can be calculated out exactly and expresse
terms of elementary functions.

APPENDIX B: THE HUSIMI PLOT

The Husimi plots are widely used in quantum mechan
as a counterpart to the Poincare surfaces of a section of
sical systems. The Husimi distribution function@25#
H(x0 ,px0) is defined by

H~x0 ,px0!5u^Cux0 ,px0&u2, ~B1!

whereux0 ,px0& is a coherent state that in the position ba
can be represented as

^xux0 ,px0&5

expS 2
~x2x0!2

2s2
1

ip0~x2x0!

\ D
~s2p!1/4

, ~B2!

wheres is a squeezing parameter that determines the rela
widths of the coherent state in thex andp directions. In our
Husimi plots the position coordinate of Eq.~B1! is chosen to
be the dashed line in Fig. 1~which is basically the centra
vertical axis but with a small horizontal shift to avoid a ze
value for states with odd parity in the horizontal direction!.
0-8
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