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Quantum chaos in a ripple billiard
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We study the quantum chaos of a ripple billiard that has sinusoidal walls. We show that this type of ripple
billiard has a Hamiltonian matrix that can be found exactly in terms of elementary functions. This feature
greatly improves computation efficiency; a complete set of eigenstates from the ground state up to the 10 000th
level can be calculated simultaneously. Nearest neighbor spacing of energy levels of a chaotic ripple billiard
shows a Brody distributiorfwith a confidence level of 99% by? tesh instead of the Gaussian orthogonal
ensemble prediction. For high energy levels we observe scars and interesting patterns that have no resemblance
to classical periodic orbits. Momentum localization of scarred eigenstates is also observed. We compare the
scar associated localization with quantum dynamical Anderson localization by drawing the wave function
distribution on basis state coefficients.
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[. INTRODUCTION with a Brody paramete3=0.953, instead of3=1.0 as
given by Wigner distribution. In Eq1), D is the mean level
The search for the signatures of chaos in atomic and mespacing andA=a(1+ 8) anda=[T'(2+ B)/(2+B)]**~.
soscopic systems has attracted increasing interest in recent As was pointed out by Gradt al. [9], in a real quantum
years[1-11] because underlying classical chaos appears tghaotic system like a billiard, the existence of marginally
give rise to universal behavior of many quantum systemsstable “bouncing ball statesf9] can destroy the fit to the
Recently, billiards of arbitrary shape have been created withsOE prediction. As will be shown in this paper, this can be
lasers and cold atoms, and this opens a new testing groungen pest by using g2 test[14] that tells us quantitatively

for such system§12]. , how well a given set of data fits an expected distribution.
One of the most studied properties for bounded quantum gearq are considered to be one of the most surprising
systems is the statistics of the distribution of nearest neigh;

. i o operties of quantum systems whose underlying classical
bor energy level spacings. This statistics appears to deperﬁi P N y ying

only on general space-time symmetr€s10] if the under- namics is chaotic. An experimental observation of such an
lying classical dynamics is chaotic. However, many of theeffect in a true quantum system has long been considered as

systems studied so far, experimentally or numerically, havé conceptual breakthroughil]. In the ripple billiard system

insufficient data on energy levels to determine the distripuconsidered here, the fact that we have an analytic expression

tion of level spacings with a large confidence lef&]. for the Hamiltonian matrix allows us to investigate scar wave

In this paper, we study properties of the ripple billiard, functions and properties up to very high energy levels. Be-
one or two of whose walls are sinusoidate Fig. 1 As the side the well known feature of scarred wave functions that

amplitude of the ripple is increased, its classical dynamicéesemble a classical particle traveling along perioqﬁc orbits,
transits from integrable, to mixed, to fully chaotic, and thene notice that scarred states also show other classical behav-
to mixed behavior again. As we shall show, the ripple billiard

has a very useful feature that the elements of its Hamiltonian a
matrix can be obtained analytically in terms of elementary
functions. This greatly increases the computation efficiency,
and allows us to obtain up to 10000 contiguous eigenstates
(approximately an order of magnitude higher than many cha-
otic systems studied to dateThis large number of energy
levels will allow us to examine the spectral statistics with
greater confidence level than has been possible in most pre-
vious studies.

For a spinless particle in a two-dimensional chaotic bil-
liard with time-reversal symmetry, the distribution of nearest
neighbor level spacingéwith spatial parities separateds
expected to obey approximately a Wigner distribution, or
more precisely, the prediction of the Gaussian orthogonal
ensemble(GOE) [13] that gives a Brody distribution func-
tion

~
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P(S)=Ags eXp( D> ) @ FIG. 1. Ripple billiard.
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iors. From Husimi plot$5] and analysis in two-dimensional
momentum space, strong localization of the momentum dis- @
tribution for a scarred eigenstate is observed. Bo Z \‘

We compare the scar associated localization with the ]
well-known quantum dynamical Anderson localization,
which has been observed in many quantum chaotic systems
such as as-kicked rotor[12] and various types of billiards
[15,16. We notice that they are two different types of local-
izations. Quantum dynamical localization basically corre-
sponds to a regime among all energy levglbove the per-
turbative regime yet below the ergodic regimahile the 0 1 2 3 4
scar associated localization corresponds to that particular
scarred eigenstate. We will make this clear by drawing the —
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wave function distribution on basis coefficients. 80 [ 74 * (b)
Interference between different scarred orbits is also ob- Z
served in wave functions of the ripple billiard, and may even 60 - Y <::> @
circle-like structures shown in this paper.
The calculation of the Hamiltonian matrix of the ripple
billiard will be given in the Appendices. In Sec. I, we intro- -
statistical properties of the energy eigenvalues. In Sec. 1V,
we analyze scarred eigenstates and associated localizations. 5 5 5 i
Section V shows some pattern formations in the ripple bil- Nearest neighbor spacing

form new wave function patterns, such as the hexagon and
duce the ripple billiard model. In Sec. lll, we examine the M
liard. Finally in Sec. VI, we make some concluding remarks.

& F

FIG. 2. (a) x? test of the GOE predictiofthe solid curve is the
Il. RIPPLE BILLIARD MODEL Brody distribution for 3=0.953) for the 1000th—2000th levels.
x3,=16.03 corresponds to a low confidence level of 45.11B.
The right wall of the ripple billiard, shown in Fig. 1, has with vertically and horizontally concentrated statsketched in the
the form insed extracted.y?,=5.73, and the confidence level is 99.08%.
5 Even-even modes are used and 0.05,b=0.5.
f(y)=b—acos(%y), @)
generally does not give a satisfying confidence 6@l In
addition, other factors affecting the dynamics of a chaotic
system may also cause deviations from GOE predictions.
One example, as shown by Gref al. in a quarter stadium
billiard, is the existence of so called bouncing ball states,
whose wave functions resemble a particle bouncing perpen-
%icularly off the straight sections of the billiaf®], may

wherea is the ripple amplitude in units of the ripple height
Lo. The heightL=1.0 in this papersee Appendix A for a
discussion of units Whena=0, the billiard is a rectangle
with width 2b (similarly, in units ofL,). Classically, as the
ripple amplitudea increases from zero, the ripple billiard

changes from an integrable system to a mixed, and then tocause the deviation of nearest neighbor level spacings from
fully chaotic system, and for very largeit becomes mixed MT behavior. Here with our ripple billiard we can examine

again. This can be illustrated easily by drawing the Poincare . N ;
surface of section when considering a classical particle col; is effect quantitatively. We find that the types of states

- , - . having the greatest affect on the statistics for the ripple bil-
liding with the billiard boundaries. liard are the vertically concentrated eigenstatessociated
with a vertical marginally stable orbitand the horizontally
concentrated eigenstatésssociated with a horizontal stable
Although a direct counterpart of the classical Poincareorbit). Figure 2a) shows the distribution of nearest neighbor
surface of section is not available quantum mechanicallysPacings for 1000 eigenstatésorresponding to the levels
depending on the degree of chaos in the underlying classic®etween 1000th and 2000th level3he distribution looks
dynamics, quantum systems do show different featureasically “GOE-like” but comparison with the GOE predic-
Among them the energy level statistics has been studietion (the solid curve in the figuegives x5,=16.03, corre-
most extensively. Nowadays the universal statistical propersponding to a low confidence level of 45.11%. If we extract
ties have been widely accepted as important signatures défie vertical bouncing ball stategbased on a Bohr-
quantum chaos, and this has been verified in experimenSommerfeld-like quantization criterja8]), the new distribu-
[9-11,17 as well as various numerical simulatiof&-10. tion has y2,=10.92 and the confidence level increases to
However, due to the limited number of available eigen-81.44%. If we further extract the horizontal stafesth are
states, in many cases the data can only show a qualitativeketched in the inset of Fig.(®], the confidence level in-
agreement with the random matrix thegBMT) prediction, creases dramatically to 99.08%, as shown in F{g).2
while quantitative comparison according to)@ test [14] Instead of the GOE prediction, Graf al. also pointed out

IIl. ENERGY LEVEL STATISTICS
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—— FIG. 4. Plots of three energy eigenstates that are scarred. Cor-
200 7[ 5‘ (b) responding periodic orbits are plotted abot@. The 1028th state,
(b) 531st state, antc) 539th state(b) involves one orbit and its
600 SQ horizontal reflection, while(c) involves three separate orbits, in
3 fact, they are the superpositions of the orbits fréah and (b).
E 400 Parameters are=0.5, a=0.02; even-even modes are used.
o)
3
‘g’ 508 The parameter” we used is 137 for 1 000 levels, and 442 for
z 7000 levels, respectively.
0
0 1 2 3 4 IV. SCARS

Nearest neighbor spacin . . .
g pechd One of the most interesting phenomenon that occurs in

quantum chaotic systems is the observation of scars. For

of 0.806.(a) The statistics of 1000 eigenstates giyds=7.47(cor- ~ Scarred eigenstates, the probability amplitude of an eigen-
responding to a confidence level of 96.30%) the statistics of state is concentrated along unstable periodic orbits instead of

7000 states givegZ,=5.00 (corresponding to a confidence level of being randomly distributed in the cavit0,23. Scars were
99.58%). originally observed by McDonalfl9] for numerical simula-
tions of a stadium billiardwhich is now considered as a
paradigm model in quantum chaolggiput did not catch
much attention until the extensive studies of He[lé}. We
are going to see in this section some new features in our
ripple billiard by examining the scarred states. As seen in
ig. 4, the probability densities of some eigenstates are en-
hanced along the path of classical periodic orbits. These scar
C[ciatterns look quite “cleant{the probabilities in regions other
X : than the orbits are fairly loy The scarring pattern in each of
Sgrggztfég osf(ac))]lscg?n(\;\gﬂ:h: gg?r?” tgzg;]d?ﬂ;ﬁi;eg?logl; f[he states in Fig. 4 is not_limited to t_hat particular_eigenstate;
a ol ‘ . : instead it reappears again and again as energy increases.
ripple billiard can be obtained analytically, we extended our Besides wave function enhancement along classical peri-

matrix size to 10000 and did the statistics using the fIrStodic orbits, scarred states show other classical behaviors. Be-
7000 levels abovc_a the ground sta_te guarantee thg aceu- 15w we compare the Husimi pld21,22 of a scarred state
racy of energy e|genvalues. obtaifedhe distribution of with its classical Poincare surface of section. The Poincare
nearest neighbor level spacings shows an excellent agregéction[the position axis is chosen as the dashed line as
r_nent with the_ Brody distributiofFig. 3(b)], where the con- shown in Fig. %a), which has a small shift from the central
fidence level is 99.'58%' . vertical ling] in this case consists of two dots as shown in
In-our ca]culqﬂons here we separated the parities. Th%ig. 5b). This agrees well with the quantum Husimi plot as
d_ata used n Figs. 2 and 3 are even-even modes. Th?nown in Fig. %c). (For the Husimi plots, the position coor-
eigenenergies were unfolded using the.s?‘me method as Inates as defined in the Husimi function are also chosen
plied in Ref.[17]. The transform of tﬁe original energy spec- along the dashed line in Fig(&. A more detailed descrip-
trum {E;} to the unfolded spectrudE;} can be written tion for making the Husimi plots is given in Appendix)B.
To further investigate the scarred eigenstate, we do an
E . _E analysis of the wave function distribution in two-dimensional
E+12E+(2/+ 1) it1 =i , (3) momentum space. In Fig. 6, we find the momentum distribu-
Ej,+1—Ej, tion for this scarred state is highly localized in four small
regions. Now if we view the energy of the quantum eigen-
state,Eq, as the energy of a classical partidg,, the mag-
ji=max1i—/), j,=min(n—1i+/). nitude of momentunP| of the particle is then/E; (in units

FIG. 3. x? test of the Brody distribution with Brody parameter

[9] that the full distribution of nearest neighbor spacings
(without states extractiorof a quarter stadium billiard can
be best fitted by a Brody distributidi.] with Brody param-
eter much less than 1.0. This claim can also be examined f

ings agrees with the Brody distributidby choosing Brody
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- & i for a clas_,sical chaoti®-kicked rotor[12]Z the change o_f
energy with respect to the number of kicks behaves diffu-
sively. However, for the quantum counterpart of this system,
energy diffusion is suppressed due to quantum interference
between eigenstates, and a wave function can be localized on
some basis states as observed numeriddllyand experi-
mentally[12]. This is known as quantum dynamical localiza-
tion, or dynamical Anderson localization due to its analogy
to the Anderson localization in disordered systems.
Quantum dynamical localization was also observed in bil-
liard systems, for example, in a chaotic Bunimovich stadium
billiard [15] and circular billiard with rough boundari¢$6].
The energy levels from low to high energies can be divided
into three regimes, namely, perturbative, localized, and er-

FIG. 5. The Husimi plot of the scarred state of Figa)4(a) is a godic, respectively. In the ergodic regime, a wave function
corresponding classical ripple billiard, afid) shows the Poincare has its support almost homogeneously on all basis states
surface of sectiofwith the dashed line ifg) as the coordinate a¥is  oth billiard cases studiefl5,16, the angular momentum
associated with this periodic orbit, which in this case includes onlybasis was usedIn the localized regime, the wave function
two dots. Plot range for the coordinate is from OLtoand for the  distribution is generally logarithmically localized on the ba-
conjugate momentum is from 0 t¢E. The eigenenergf for this  Sis states. The location of the three regimes depends on the
scarred state is 5228.8ih units of m2%2/2m,L3). billiard parameters. A given energy eigenstate, which is

known to be ergodic at parameter, say may fall into the
of i/Lg). The path of this periodic orbit makes an angle localized regime at a smaller parameéger (eventhougha,
with respect to the horizontal axjsee Fig. 5a)]. Thex and  also corresponds to full chaos classically
y components of momentum are|P|cosé and = |P|sin 6, For our ripple billiard, instead of choosing angular mo-
respectively. The momentum values deriveldssically in mentum states as the expansion basis, we are going to intro-
this way match exactly with those for the quantum momen-duce a different approach that is very suitable for the ripple
tum localizations in Fig. 6. This correspondence illustratesilliard. As shown in great detail in the Appendices, we make

0 L2 L y

the classical particle featuref scarred states. a coordinate transformation which can convert the ripple bil-
liard into a rectangular billiardfrom real (x,y) space to
A. Quantum dynamical Anderson localization (u,v) spacé . In the rectangular ,v) billiard, the /th

L eigenstate wave function can be written as
From the above momentum localization of scarred states,

it is natural to ask whether this localization is related to © oo
quantum dynamical Iocaliz_atioﬁdynqmic_al Anderson local- b= Bémgomn(u,v), (4)
ization). Quantum dynamical localization shows a funda- m=1n=1

mental difference between classical and quantum mechanics. ) i
where the functionsp,,,(u,v) are for an orthonormal basis

This can be seen from the diffusion behavior. For example : i )
[see Eq(AB)]. In this basis, we can see quantum dynamical
localization in the ripple billiard. For any ripple amplitude
the wave function distribution on basis coefficieltg, be-
comes increasingly homogeneous for high energy levels.

It is interesting to note that in two-dimensionahn)
space, the distribution @, is mainly concentrated along a
curve, where the basis states,, with (m,n) values on the
curve have the same energy as that eigenstate. This curve
approximately satisfies the equation,

o

|P| cos 6 | B m2+n2:E’
whereE is the energy. This equation defines a quarter of a
circle with positivem’s andn'’s [in the discussion below we
# will use angle @ to denote the pointr,n), with tana
=n/m].
Figure 7 shows the distribution of values Bf,, along
‘ this quarter circle for the 1028th eigenstate &+ 0.09 and
0.02. It clearly shows that foa=0.09, the distribution of
FIG. 6. Momentum localization of the scarred eigenstate in Figvalues ofB,, is roughly homogeneougn the ergodic re-
4(a). The locations of the four small regions can be classically pre-gime for thisa), while for a=0.02, it is logarithmically lo-
dicted. Plot range is from-\E to VE in both directions. calized(in the localized regime for thia).
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not really a geometry path, the coefficient distribution is not
O (degree)

an isolated peak ab.

FIG. 7. Comparison of basis coefficient distribution for the  Comparing Figs. 9 and 10, we find that a more localized
1028th eigenstateB,,,, is the wave function coefficient, witm, n  distribution of B, in two-dimensional coefficient space im-
characterizing the basis state in the transformea) box as de- plies the existence of scarring effect in coordinate space.
scribed in text. Anglex measures theng,n) values, tam=n/m.  This feature is verified for other energy levels as well. Like
(a) ergodic case with ripple amplitude=0.09, (b) localized case in the coordinate space a scarring pattern can repeat itself as
with a=0.02. Other parameters are same as in Fig. 4. the energy changes, the corresponding localization behavior

of B, distribution also reappears as expected.

B. Scarring localization

In Fig. 6 we saw that the scarred 1028th eigenstate was 50

localized in momentum. The localization associated with

scars is different from the dynamical localization discussed 40

in the preceding section. It holds for single isolated eigen- ,Q_\

states, while dynamical localization occurs on a continuous 5 30

range of energy levels, no matter if they are scarred or not. g (@)
Below we show the localization associated with a scarby ~— 20

drawing the distribution ofB,,, in two-dimensional basis

state coefficient space. We compare the scarred 1028th 10

eigenstate[see Fig. 4a)] and an unscarredthe 1025th
eigenstate, whose wave function looks quite rand@ee 10 20 30 40 50
Fig. 8. Figure 9 shows the distribution &, for the 1025th
eigenstate. In this figure, we do not plot valuesBgf, that (n+1)/2
are less than 10°°. In Fig. 9, as we just mentioned in the
preceding section, the coefficients are distributed mainly
along the “quarter circle.” Here it is marked Wb§. Starting
from the points on curv®, there are also martgils extend-
ing outward. We denote these tails By

Now we take a look at the nearby 1028th scarred eigen-
statedFig. 4@ ]. In Fig. 10 we again see that the coefficients
are mainly distributed along the quarter cirBleand we see
also the tail linesA. They roughly cross at a point, s&y.
Nevertheless, the distribution, in particular for the tail lines,
is much more narrowe¢more closely localized to poir®). 40
The location ofO can be easily understood. Its associated (”*7)/2 50
basis statéwith this specificm andn valug corresponds to
an ideal particle moving along a path that the scarred state FIG. 9. The basis coefficient distribution for the unscarred
follows as shown in Fig. @). Since the scarring pattern is 1025th eigenstate.
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FIG. 11. Hexagon pattern formation in a ripple billiard. Ripple
magnitudea is 0.05 andb=1.0. The ripple length is doubled and
only one half of the wave function is plotted. This is the 554th
eigenstatdodd-odd modes are used

served was circles. In fact we also find circlelike patterns in
our ripple billiard, such as the example shown in Fig. 12.

VI. CONCLUSIONS

FIG. 10. The basis coefficient localization for the scarred 1028th In t.hls paper, we have.shown that a rlpplg b|II|ar'd has an
cigenstatd Fig. 4a)]. The central peak is at poir®, which has analytic Hamiltonian matrix and this fact assists us in obtain-

(m,n) values that correspond to a classical particle carrying théng_ a Comp_lete set and Iar_ge number of eigenstates fo_r sta-

energy of this eigenstate and undergoing the scarring orbit. tistical studies as well as in looking for features associated
with very high energies, such as the scarring effect and the
correspondence between quantum and classical systems. Our

V. PATTERN FORMATION numerical results show clearly the deviation of nearest

The scarred state shown in Figgcpinvolves the super-

position of orbits in Figs. @) and 4b). The superposition W
and interference of multiple scar orbits can result in new - - - -
patterns that may not seem to follow a classical orbit, like the o"8a - T "
hexagon pattern shown in Fig. 11. The vertical and horizon- - v ok
tal orbits interact when they cross each other and organize - -t
themselves to form a local hexagon structyte.this figure, M e eyt - -
in order to better show this pattern, we extend the ripple v - 4 Fian - b ’
length and show one half of the wave function. The Hamil-  |* av% A 4 AR Y -4
tonian matrix can be derived similarly with slight modifica- LI ‘Bl LI > e
tions) This pattern also repeats itself as we vary the energy. b X AT 1 addy i X T
If we change the shape of our ripple by a small amount, this I R
pattern still remains robust. For example, Fig. 11 is the 554th 2e.0 % 28 - SAL Y
eigenstates foa=0.05, and we find that the 554th eigenstate o » . »
for a=0.045 anda=0.0475 also have the same hexagon | % o8 Saa® o8 e
pattern. Fora=0.0525, this pattern shifts in energy to the .* o .* oL
562nd eigenstate, while fa=0.0550, the 544th eigenstate e i’ 4 - "0 7 o
shows this pattern. # 2"00"¢ spus eTer"s o
It is interesting that this hexagon structure looks quite o o Ty o o A

similar to the pattern formation in classical dissipative non-
linear system¢24], eventhough their underlying mechanics  FIG. 12. Circlelike pattern formation in a ripple billiard. Same
are totally different. In the classical experimef#l], be-  parameters as in Fig. 11 except 0.0525. This is the 546th eigen-
sides the hexagon structure, another fundamental pattern obate.
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neighbor spacings of energy eigenvalues of a chaotic ripple 52

billiard from the GOE prediction. According to the Husimi —| h;—

plots and analysis in two-dimensional momentum space, a Ju?
strong momentum localization is observed for a scarred state.

We compare the localization behavior of a scar with quantum
dynamical Anderson localization, by analyzing the WaveWhere
function distribution on a basis set. We also show two typical
patterns in the ripple billiard eigenstates, the hexagon and the
circlelike structures.
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gy Thagp 5] #alU0) =Enda(U0),
(Ad)
1 (f)2
=— _ 2
" 4f2+(f) e
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f! 2 £
he=2|F | u=Fu. (A5)

Equation(A4) can be viewed as the Scliinger equation
in a curved space. In other words, the ripple billiard is

equivalent to a square billiard in a curved space.

APPENDIX A: THE HAMILTONIAN MATRIX FOR THE
RIPPLE BILLIARD

The stationary Schrdinger equation of a two-dimensional
billiard is

The choice of the basis states is how obvious; they are

[ 2
Omn(U,v)= f(—v)sm

1
u+ =

mm 2

sin(nmv), (A6)

which automatically satisfy the boundary conditionsuat

h? [ & +1/2,v=0,1. It is easy to verify that they obey the follow-
- 2m, ﬁjL a_yz In(XY)=Engn(xy), (A1) ing orthonormal relation,

where the wave functioms,(x,y) vanishes on the walls of f J * u a(xy) dudv=6 6.
the billiard (shown in Fig. 1. The difficulty in solving Eq. Pmn(U0) @me(Uh0) 57 mm' Cnn’
(A1) lies in how to deal with the curved boundaries that (A7)
control all the physics of the billiard. Our method is to
straighten the boundaries with a coordinate transformatio¥/nere
[5,6], then expand), in terms of a chosen basis that satisfies a(X.y)
the boundary condition automatically. (x.y =2f(v). (A8)

The Schrdinger equatior(A1) can be made unitless by a(u,v)
choosing units as follows; length is taken in unitsLgf(the _ i
height of the billiard has to be specifiesb thatx=x'L, and ~ With the expansion
energy in units of ey, so that E,=E;ey, where g, o o
=ﬁ2/2meLg. For example, ilLy=61.7 nm, the units of en- — B” (u,v) (A9)
ergy e,=0.01 meV. EquatiorfAl) then becomes & mzzl ngl maPmnt 500

2 52 Eq. (A4) is transformed to a matrix problem,
—[ = =Eidn(xy).  (A2) L
X2 gy ,
mE:l ngl Humnmrrn B =EBimns (A10)

The energy units used in the figures of this paper, in fact,
have an additional multiplying factor of? for the conve-  \here the Hamiltonian matrix includes four parts
nience of computing. In the subsequent equations we drop
the supersqript’() _from x',y, andErQ_. _ _ H=Hy+H;+H,+Hj. (A11)

The straightening of the boundaries is done by introduc-
ing a pair of curvilinear coordinatesi( v) with Their matrix elements are

X » 5 1. n'm ,
u= m, v=Y. (A3) (Ho)m/n'mn= Om'm| N“7T“8pn— Z‘Jn’n_ T n'n

In terms of coordinatesu(v), the ripple billiard is turned n n_sz (A12)
into a square billiard, and the Schiinger equation becomes 2 “nnje
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m?m?
(Hl)m’n’mn:T5m’mJ;"n+m2ﬂ'2
X(Kﬁw’fm_KiUrm)‘]i’n’ (A13)
(Hz)m’n’mn:mW(Klmr+m+Klm/fm)(_\]grn"'znﬂ'\]ﬁrn)a
(A14)
(H3)m’n'mn:m7T(Krj;1r+m+Krj;]r_m)(J::rn_ZJﬁrn)'
(A15)
where the integrals are defined below:
1/2 1
K,11=f duusin n u+—) , (A16)
~12 2
1/2 1
Kﬁ=f dut?cosnm| u+=||, (A17)
~12 2
1o fld cosn wx (A18)
=)o “b—acog2mx)’
) 1 cosnmx
12= | dx 5 (A19)
0 [b—acog2mx)]
2 1 2sinmax)cogm’ wx)f’(x)
I = | dx
0 f(x)
1 1 1 1
:Wa(|m+m’—2_Im+m’+2+|m—m’—Z_Im—m’+2)’
(A20)
3 1 2 sinmax)cogm’ wx)f"(x)
I =] dx
0 f(x)
1 1
=2m2a(l ;- ot o
1 1
“lnimi2 " Tneme—2) (A21)
1 2sinmax)sin(m’ wx
J‘n‘qu=fdx r(max)sin(m’ 7x)
0 f2(x)
2 2
=1 mfm’_|m+m’ ) (A22)
5 1 2 sinfmamx)sin(m’ mx)f'2(x)
Jow =] dx 5
0 f2(x)
2 2 2
=2m?a’ Imfm’_Ierm’_E(Imfm’JA
2 2 2
+Im—m’—4_|m+m'+4_|m+m’—4) ' (A23)
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0, when n=0
1= -1)"+1
Kn=) - L when n+0, (A24)
2na
1/12, whenn=0
Z={ (-1)"+1
Kn —( ) ,  when n#0. (A25)
(nm)?

I} and 12 can be derived with the residue theorem. After
some algebra, we have

0, whenn is odd
I1= 1 b?—a )“’2 :
b— ,  Wwhenn is even.
b2_a2 a
(A26)
d b+ (n/2)\b*—a?
2o 0 p DH(02) — i (A27)

n b " b2—a

So, eventually every element of the Hamiltonian matrix is
expressed in terms of elementary functions. This increases
the computation efficiency remarkably and allows us to
study large number of eigenstates of the ripple billiard. Note
that similar transformations like EQA3) can be applied to
straighten billiards of other shapes. However, the sinusoidal
boundary may be the only one where the Hamiltonian matrix
elements can be calculated out exactly and expressed in
terms of elementary functions.

APPENDIX B: THE HUSIMI PLOT

The Husimi plots are widely used in quantum mechanics
as a counterpart to the Poincare surfaces of a section of clas-
sical systems. The Husimi distribution functiof25]
H(Xg,Pyo) is defined by

H(Xo,Px0) = (¥ X0, Pxo)|?, (B1)

where|xq,pyo) is @ coherent state that in the position basis
can be represented as

oxt — (X_Xo)2 n iPo(X—Xo)
202 fi

( 0.277) 1/4

(X[Xg,Pxo) = , (B2

whereo is a squeezing parameter that determines the relative
widths of the coherent state in tlxeandp directions. In our
Husimi plots the position coordinate of E@1) is chosen to
be the dashed line in Fig. Gwhich is basically the central

The integralsK} andK? in the above equations can be easily vertical axis but with a small horizontal shift to avoid a zero

obtained:

value for states with odd parity in the horizontal direcjion
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