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Bloch waves of Bose–Einstein condensates (BEC) in optical lattices are extremum nonlinear eigenstates
which satisfy the time-independent Gross–Pitaevskii equation (GPE). We describe an efficient Taylor
predictor–Newton corrector continuation algorithm for tracing solution curves of parameter-dependent
problems. Based on this algorithm, a novel two-stage continuation algorithm is developed for computing
Bloch waves of 1D and 2D Bose–Einstein condensates (BEC) in optical lattices. We split the complex
wave function into the sum of its real and imaginary parts. The original GPE becomes a couple of two
nonlinear eigenvalue problems defined in the real domain with periodic boundary conditions. At the
first stage we use the chemical potential μ as the continuation parameter. The Bloch wavenumber k
(kx,ky), and the coefficient of the cubic term are treated as the second and third continuation parameters,
respectively. Then we compute the Bloch bands/surfaces for the 1D/2D problem with linear counterparts.
At the second stage we use μ and k/kx or ky as the continuation parameters simultaneously with two
constraint conditions. The states without linear counterparts in the GPE can be obtained via states with
linear counterparts. Numerical results are reported for both 1D and 2D problems.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Superflow of Bose–Einstein condensates (BEC) [1,2] in an opti-
cal lattice is represented by a Bloch wave, which can be regarded
as a plane wave modulated by the periodic potential. When the
number of dilute atoms or molecules is large, the BEC system is
well described by the mean-field theory, and is governed by the
well-known Gross–Pitaevskii equation (GPE) [3,4]:

ih̄
∂Ψ

∂t
= − h̄2

2m
�Ψ + V (x)Ψ + 4π h̄2as

m
|Ψ |2Ψ, (1.1)

where m is the atomic mass, as the s-wave scattering length, and
V (x) the external potential imposed on the physical system. We
consider the potential as the optical lattices created either by two
(1D) or four (2D) laser beams, i.e.,

V (x) = V 0 cos 2kL x or V (x) = V 0(cos 2kLxx + cos 2kLy y),

x = (x, y), (1.2)
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respectively, where V 0 is a constant which is proportional to the
laser intensity, and kL (respectively, kLx and kLy in the x- and y-
coordinate) is the wavenumber of the laser [5]. Eq. (1.1) is also
known as the nonlinear Schrödinger equation (NLS).

For simplicity we consider the dimensionless 1D GPE of the fol-
lowing form

i
∂Ψ

∂t
= −1

2
�Ψ + ν cos x · Ψ + c|Ψ |2Ψ, (1.3)

where all the variables are scaled to be dimensionless with the
system’s basic parameters: the coefficient of the periodic poten-

tial ν is in units of 4h̄2k2

m , the wave function Ψ in units of
√

n0,
where n0 is the averaged BEC density, the time variable t in units
of m

4h̄2k2 , the spatial variable x in units of 1
2k , and the coupling

constant c = πn0as
k2 . Here and in what follows, we have omitted the

capital subscript L in the wavenumber. Substituting the formula

Ψ (x, t) = e−iμtψ(x) (1.4)

into (1.3), we obtain the nonlinear eigenvalue problem

−1

2
�ψ + ν cos x · ψ + c

∣∣ψ2
∣∣ψ = μψ, (1.5)

where μ is the chemical potential, and ψ(x) is a complex station-
ary state wave function. The energy functional associated with (1.5)
is
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Eμ(ψ) =
∫
Ω

[(
−1

2
� + ν cos x

)
ψ · ψ∗ + c

2
|ψ |4 − μ|ψ |2

]
dx,

Ω = [0,2π ], (1.6)

where ψ∗ denotes the complex conjugate of the wave function ψ .
Any nontrivial solution of (1.5) which minimizes the energy func-
tional (1.6) is called a nonlinear eigenstate [5] or nonlinear coher-
ent mode [6] associated with the nonlinear eigenvalue μ. Bloch
waves are nonlinear eigenstates of the form

ψ(x) = eikxφk(x), (1.7)

where φk(x) is a complex periodic function of period 2π and k
the Bloch wavenumber. Substituting (1.7) into (1.5), we obtain the
following equation for each Bloch wave state φk:

−1

2
(∇ + ik)2φk + ν cos x · φk + c|φk|2φk = μφk,

φk(x + 2π) = φk(x), x ∈ Ω, (1.8)

with constraint∫ ∣∣φk(x)
∣∣2

dx = νΩ = 2π, (1.9)

where νΩ denotes the volume of Ω . In (1.8) the nonlinear eigen-
value μ can be regarded as a function of k, i.e., μ = μ(k) for states
with linear counterparts. The set of eigenvalues μ(k) are called
Bloch bands.

During the past decade various approaches have been used to
find the Bloch waves φk in 1D. At the beginning, Wu and Niu [7]
used a two-mode approximation method to find the Bloch states
near the edge of the Brillouin zone and discovered a loop struc-
ture in the Bloch band. Later Wu and Niu [8] used Fourier series
to expand φk and found the Bloch waves by minimizing the en-
ergy functional. However, this method could not reproduce the
loop structure. Diakonov et al. [9] recovered this loop structure by
solving (1.8) for different values of μ and k, and obtained the Bloch
bands μ(k) by interpolation. In [5] Wu and Niu reproduced the re-
sults of Diakonov et al. [9] with a new method. They expanded φk
using a finite sum of Fourier series

φk(x) =
N∑

n=−N

aneinx, N ∈ N, (1.10)

and substituted (1.10) into (1.8) to obtain a nonlinear system of
2N + 1 equations in 2N + 2 unknowns fn(a0,a±1, . . . ,a±N ,μ) = 0.
The Bloch wave was obtained by minimizing

S =
N∑

n=−N

f 2
n

under the constraint
∑N

n=−N |an|2 = 2π . All the numerical meth-
ods mentioned above are efficient to handle the 1D problem but
seem to have difficulties with the 2D problem. To the best of our
knowledge, the 2D problem has never been completely solved in
physics literatures.

Recently, a numerical continuation algorithm, namely, AUTO97
[10], has been used to investigate traveling waves in saturable non-
linear Schrödinger lattices [11]. On the other hand, Chang, Chien
and Jeng [12], and Chang and Chien [13] have studied efficient
continuation algorithms for nonlinear Schrödinger equations. In
this paper, we present novel two-stage continuation algorithms for
computing Bloch bands/surfaces of the GPE in 1D/2D. Starting with
the 1D problem, we split the complex function φk(x) in (1.8) into
the sum of its real part and imaginary part. Then (1.8) becomes
a system of two real nonlinear eigenvalue problems. We may dis-
cretize the system by using finite differences, finite elements or

pseudo-spectral methods. In either case we obtain a nonlinear
system of equations involving multiparameters. At the first stage,
we use an efficient Taylor predictor–Newton corrector continua-
tion algorithm [14] to trace the ground state solution curves. The
parameters μ, k, and c in (1.8) are treated as the continuation
parameters. For the 2D problem we have one additional contin-
uation parameter ky . Thus the eigenvalue μ depends on kx and
ky , and the Bloch bands will be replaced by the Bloch surfaces.
For the 1D problem the constraint (1.9) is regarded as a target
point on the ground state solution curve for each curve-tracking.
We stop the curve-tracking whenever the target point is reached.
Then we obtain nonlinear eigenstates of (1.8) with linear counter-
parts. However, there are nonlinear Bloch waves which do not have
their linear counterparts [5,15–17]. This is the case where a loop
structure can occur for c > ν .

At the second stage we compute the closed loops in the Bloch
bands where the effect of nonlinearity is increasing. We treat μ
and k as the continuation parameters simultaneously. Starting with
the first bifurcation point on the trivial solution curve of (1.8) for
k = ±0.5, and say, c = 0.2, we follow the solution curve using the
first stage continuation algorithm until the target point is reached.
The target points located at the cusp points of the band consist
of two nonlinear eigenstates with and without linear counterparts.
We then switch from the first stage to the second stage continua-
tion algorithm, and implement the second order Taylor predictor
on the parameter k. Next we perform the Newton corrector to
compute (φk,μ,k) where (1.9) is used as the second constraint for
the augmented linear system in addition to the unit tangent vec-
tor used in the first stage. We proceed in this way until the closed
loop is obtained. Thus the eigenstate without linear counterpart
can be obtained indirectly from the Schrödinger eigenvalue prob-
lem (SEP) by passing through the state with linear counterpart.
The two-stage continuation algorithm for the 1D problem can be
modified to compute the Bloch surfaces of the 2D problem.

This paper is organized as follows. In Section 2 we briefly re-
view the relationship among eigenvalues, energy levels and bifur-
cations of the GPE. In particular, we show how an eigenpair of the
linear eigenvalue problem associated with the GPE can be used as
an initial guess for computing its nonlinear counterpart using con-
tinuation methods. In Section 3 we derive the nonlinear eigenstate
without linear counterpart for the 1D problem (1.8) with constraint
(1.9) at k = 1

2 , where the closed loop of the Bloch band occurs.
In Section 4 we describe two-stage continuation algorithms for
computing the lowest Bloch bands and surfaces in 1D and 2D, re-
spectively. Our numerical results for the 1D and 2D problems are
reported in Section 5. Finally, some concluding remarks are given
in Section 6.

2. Nonlinear eigenstates with linear counterparts

For completeness we briefly discuss how the eigenpairs of the
Schrödinger eigenvalue problem or the linear Schrödinger equation
may be exploited to compute their nonlinear counterparts of the
NLS. In [12,13] we used continuation methods to study the ground
state and excited-state solutions of the following NLS:

i
∂

∂t
Ψ (x, t) = −1

2
�Ψ + V (x)Ψ + c|Ψ |2Ψ, t > 0,

x = (x, y) ∈ Ω, (2.1)

where Ψ = Ψ (x, t) is the macroscopic wave function of the BEC,
V (x) = 1

2 (γ 2
x x2 + γ 2

y y2) the magnetic trapping potential with γx

and γy the trap frequencies in x- and y-direction, the constant c
can be positive or negative, and Ω ⊂ R2 a bounded domain with
piecewise smooth boundary ∂Ω . Eq. (2.1) can be easily generalized
to M-component NLS, M � 2.
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An important invariant of the NLS is the mass conservation con-
straint, or the normalization of the wave function∫
Ω

∣∣Ψ (x, t)
∣∣2

dx = 1, t � 0, (2.2)

which means that the total probability of finding the particle any-
where in Ω must be 1.

Substituting the formula

Ψ (x, t) = e−iμt u(x) (2.3)

into (2.1), we obtain the stationary state nonlinear eigenvalue
problem

F (u,μ) = −1

2
�u − μu + V (x)u + cu3 = 0 in Ω, (2.4)

where μ is the chemical potential which is proportional to the
total energy of the system, and u(x) a real function independent
of t . To compute an energy level of (2.4) using numerical continu-
ation methods, we have to trace the corresponding solution curve
branching from a bifurcation point on the trivial solution curve
{(u,μ) = (0,μ) | μ ∈ R}. Here the chemical potential μ is treated
as the continuation parameter [12,13]. We stop the curve-tracking
whenever the mass conservation constraint for the stationary state
wave function∫
Ω

∣∣u(x)
∣∣2

dx = ‖u‖2 = 1 (2.5)

is satisfied for some wave function ũ and chemical value λ̃. We
denote (ũ, λ̃) as a target point in the curve-tracking. Note that the
parameter of a bifurcation point of the GPE (NLS) is just an eigen-
value of the associated Schrödinger eigenvalue problem (SEP)

−1

2
�u + V (x)u = μu in Ω, (2.6)

We may detect bifurcation points along the trivial solution curve of
(2.4) by monitoring the singularity of the Jacobian matrix DF . How-
ever, the computational cost can be very expensive if the order of
DF is large. To reduce the computational cost we may compute
the first few eigenpairs of (2.4) using the Jacobi–Davidson method
or some well-known codes. The procedure discussed above shows
that continuation can compute states of the NLS with linear coun-
terparts. In particular, it can be applied to compute Bloch waves of
(1.8).

Recently, we have compared the performance of a variant of the
simplified two-grid continuation algorithm [13] with the imaginary
time evolution method (ITEM), and some variants of the ITEM,
such as AITEM and AITEM (A.N.) [18]. We refer to [19] for the
details.

3. An eigenstate without linear counterpart

We now present an analytical Bloch wave solution of the GPE,
which has no linear counterpart. This example illustrates the dif-
ficulty to find Bloch waves for the GPE. We rewrite the time-
independent 1D GPE (1.5) as

−1

2

d2ψ

dx2
+ c|ψ |2ψ + ν cos x · ψ = μψ, x ∈ Ω = [0,2π ], (3.1)

with constraint∫
Ω

∣∣ψ(x)
∣∣2

dx = 2π. (3.2)

In [5] Wu and Niu used ψ(x) = eikxφk(x) = aeikx + be−ikx , a,b ∈ R,
to derive the eigenstate of (3.1) without linear counterpart. To be
precise, let

ψ(x) = eikxφk(x) = aeikx + be−ikx, a,b ∈ R. (3.3)

We have

ψx = ki
(
aeikx − be−ikx), ψxx = −k2ψ, (3.4a)

and

|ψ |2 = (
a2 + b2) + 2ab

(
cos2 kx − sin2 kx

)
. (3.4b)

Substituting (3.4a) and (3.4b) into (3.1), we obtain

1

2
k2ψ + c

[(
a2 + b2) + 2ab

(
cos2 kx − sin2 kx

)]
ψ + ν cos x · ψ

=
[

1

2
k2 + c

(
a2 + b2) + 2abc cos(2kx) + ν cos x

]
ψ

= μ(k)ψ, (3.5)

where μ(k) = k2

2 + c(a2 + b2) + 2abc cos(2kx) + ν cos x. For k = 1
2 ,

we have

μ

(
1

2

)
= 1

8
+ c

(
a2 + b2) + (ν + 2abc) cos x.

Let ν = −2abc. Then

2ab = −ν

c
. (3.6)

From the mass conservation constraint, for k = 1
2 we have

∫
Ω

∣∣ψ(x)
∣∣2

dx =
2π∫
0

[(
a2 + b2) + 2ab cos(2kx)

]
dx

= 2π
(
a2 + b2). (3.7)

If we choose

a2 + b2 = 1 (3.8)

in (3.7), then we obtain the constraint (3.2), and hence Eq. (3.4)
in [5]. To be precise, we add (3.6) and (3.8) together, and obtain

(a + b)2 = 1 − ν

c
,

or

a + b = ±
√

1 − ν

c
= ±

√
c − ν√

c
.

Subtracting (3.8) from (3.6), we have

(a − b)2 = 1 + ν

c
,

or

a − b = ±
√

1 + ν

c
= ±

√
c + ν√

c
.

So we obtain two solutions for a and b as follows:

a =
√

c − ν + √
c + ν

2
√

c
, b =

√
c − ν − √

c + ν

2
√

c
, (3.9a)

a =
√

c − ν − √
c + ν

2
√

c
, b =

√
c − ν + √

c + ν

2
√

c
(3.9b)

and
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μ

(
1

2

)
= 1

8
+ c.

Substituting (3.9a) and k = 1
2 into (3.3), we obtain the nonlinear

eigenstate of (1.8), which is the same as Eq. (3.4) in [5]. This Bloch
wave solution has no linear counterpart since a and b diverges
when c becomes zero.

4. Two-stage continuation algorithms

In this section, we describe two-stage continuation algorithms
for computing Bloch bands/surfaces of the 1D/2D problem. The
first stage continuation algorithm computes the eigenstates of
(1.8) with linear counterparts while the second stage deals with
eigenstates without linear counterparts. In the first stage we use
the chemical potential μ as the continuation parameter, and the
unit tangent vector as the constraint condition. The second stage
continuation algorithm is a straightforward extension of the first
stage with one additional continuation parameter, namely, the
wavenumber k, and one additional constraint condition, namely,
(1.9). The algorithm for the 2D problem is a slight modification of
that for the 1D problem, and will be discussed independently.

4.1. 1D problem

Let φk(x) = p(x) + iq(x) in (1.8), where p(x) and q(x) are two
real functions. The real part and imaginary part of (1.8) can be
expressed as

−1

2
pxx + kqx + k2

2
p + ν cos x · p + c

(
p2 + q2)p = μp,

−1

2
qxx − kpx + k2

2
q + ν cos x · q + c

(
p2 + q2)q = μq,

in Ω = (0,2π),

p(x) = p(x + 2π), q(x) = q(x + 2π), x ∈ Ω. (4.1)

We discretize (4.1) using the centered difference approximations
with uniform meshsize h = 2π

N . For simplicity we use P and Q to
denote the discrete grid functions p(x) and q(x) on Ω . The cen-
tered difference analogue of (4.1) is

F (P , Q ,μ,k) =
[

F1(P , Q ,μ,k)

F2(P , Q ,μ,k)

]
= 0, (4.2)

where

F1(P , Q ,μ,k) = A P + kB Q − μP

+
(

k2

2
I + ν cos xI + c(P ◦ P + Q ◦ Q )

)
◦ P = 0,

F2(P , Q ,μ,k) = −kB P + A Q − μQ

+
(

k2

2
I + ν cos xI + c(P ◦ P + Q ◦ Q )

)
◦ Q = 0, (4.3)

where “◦” denotes the Hadamard product,

A = 1

2h2

⎡
⎢⎢⎢⎢⎢⎢⎣

2 −1 −1

−1 2
. . .

. . .
. . .

. . .
. . .

. . . −1
−1 −1 2

⎤
⎥⎥⎥⎥⎥⎥⎦

∈ RN×N ,

B = 1

2h

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 −1

−1 0
. . .

. . .
. . .

. . .
. . .

. . . 1
1 −1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

∈ RN×N

and the identity matrix I ∈ RN×N . Note that B is skew-symmetric,
i.e., BT = −B . Let W = [P , Q ]T . In the first stage continuation al-
gorithm, for any wavenumber k ∈ [−1,1], there is one and only
one chemical potential μ associated with k. That is, we have
μ = μ(k) for k ∈ [−1,1]. Thus in this stage we can fix k and only
treat μ as the continuation parameter. The corresponding Jacobian
matrix D F = [DW F , Dμ F ] is

DF =
⎡
⎢⎣

A − (μ − k2

2 − ν cos x)I
+ c diag((3P ◦ P + Q ◦ Q ))

kB + 2c diag(P ◦ Q ) −P

−kB + 2c diag(P ◦ Q ) A − (μ − k2

2 − ν cos x)I
+ c diag((P ◦ P + 3Q ◦ Q ))

−Q

⎤
⎥⎦ .

(4.4)

Note that DW F is the linearization of the mapping F at the equi-
librium W0 = [0,0]T , i.e.,

DW F (W0,μ) = K − μ

[
I 0
0 I

]
, (4.5)

where

K =
[

A + ( k2

2 + ν cos x)I kB

−kB A + ( k2

2 + ν cos x)I

]
. (4.6)

Since A is symmetric and B is skew-symmetric, K is a symmetric
matrix. We have the following result. The proof can be found in
[13] and is omitted here.

Theorem 4.1. All the eigenvalues of the matrix K are real and at least
double.

4.2. Taylor predictor and Newton corrector

The nonlinear system (4.2) can be simplified as

F (y) = 0, (4.7)

where in the first stage continuation algorithm F : R2N+1 → R2N

is a sufficiently smooth mapping with y = (P , Q ,μ). In the
second stage continuation algorithm we will treat both μ and
k as the continuation parameters simultaneously. Therefore the
smooth mapping should be defined as F : R2N+2 → R2N with
y = (P , Q ,μ,k). For convenience we consider the first stage con-
tinuation algorithm at this moment. Let y(k) be an approximating
point on some solution curve Γ of (4.7). We choose a parameter-
izing equation

Nk(y, τ ) = 0, (4.8)

where Nk : R2N+1 × R → R2N+1 is a sufficiently smooth mapping
such that the inflated nonlinear system.

Tk(y, τ ) :=
[

F (y)

Nk(y, τ )

]
= 0,

Tk : R2N+1 × R → R2N+1, (4.9)

is locally uniquely solvable in a neighborhood of (y, τ ) = (y(k),0).
Here τ denotes the local parameter defined in (4.8). If |τ | is suffi-
ciently small, the solution function y(k)(τ ) of (4.9) defines a local
parametrization of the solution curve Γ .
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The Taylor expansion of y(k)(τ ) is

y(k)(τ ) = y(k)(0) + τ ẏ(k)(0) + τ 2

2
ÿ(k)(0) + τ 3

6

...
y(k)

(0) + O
(
τ 4).

Schwetlick and Cleve [14] proposed the second/third Taylor pre-
dictor for curve-tracking, where the directional derivatives contain-
ing F̈ and

...
F could be efficiently approximated by a few function

evaluations. The numerical results in [14] show that the Taylor
predictors can reduce the computational cost. More precisely, the
number of calculated approximating points and the number of
evaluations and factorizations of Jacobian matrices are less than
the general predictor–corrector methods known from literature.

To find the Bloch waves of (1.8) with linear counterparts, we
will implement the second order Taylor predictor–Newton correc-
tor in the context of the simplified two-grid continuation algo-
rithm for computing the ground state solutions {(φk,μ)} of (4.1).
Here the chemical potential μ is treated as the continuation pa-
rameter [12,13]. The other two parameters c and k ∈ [−1,1] are
keep fixed for each curve-tracking.

Note that the Bloch waves are symmetric with respect to k = 0.
To save unnecessary computations we may consider k ∈ [0,0.5]. To
be consistent with the data used in [5], we choose the coefficient
of the periodic potential ν = 0.1. The constraint (1.9) is regarded
as a target point on each nontrivial solution curve. Whenever the
target point is reached, we also obtain the energy level μ. To start
with, we set c = k = 0 and trace the ground state solution of (4.1)
until the target point is reached. Here we treat k as the second
continuation parameter with step-size s1 = 0.05. Next, we trace
the ground state solution of (4.1) with c = 0 and k = 0.05. We
proceed in this way until the ground state solution of (4.1) with
c = 0 and k = 0.5 is traced. Then we obtain the first Bloch wave for
the linear problem with c = 0. Now we treat the third continuation
parameter c = 0.05, and trace the ground state solution of (4.1)
with k = 0. We repeat the same process as above until the ground
state solution associated with c = 0.05 and k = 0.5 is obtained.
We continue this procedure until the ground state solution of (4.1)
with c = 0.2 and k = 0.5 is traced.

Suppose that (W ( j),μ( j)) = (P ( j), Q ( j),μ( j)) is an accepted ap-
proximating point on the solution curve in the jth continuation
step. Then we use the second order Taylor predictor to predict
a new point (W ( j+1,1),μ( j+1,1)), which will be used as an ini-
tial guess for the Newton corrector. We perform the Newton
corrector until it converges to the desired approximating point
(W ( j+1),μ( j+1)).

Algorithm 4.2. The first stage continuation for the Bloch bands
with linear counterparts.

Input:
μ := the chemical potential which is used as the first con-
tinuation parameter.
k := the second continuation parameter, k ∈ [0,0.5] with
stepsize s1 = 0.05.
c := the third continuation parameter, c ∈ [0,0.2] with step-
size s2 = 0.05.
ε := accuracy tolerance for the Newton corrector on the
coarse grid and fine grid.
Initialization: c = k = 0.

Step 1. Use a modification of the simplified two-grid scheme [13]
to compute the ground state solution of (4.1) with con-
straint (1.9), and obtain the energy level μ(k) for c.
(a) Outer continuation. Use the Taylor predictor–Newton

corrector continuation algorithm to compute approxi-
mating points on the coarse grid until the target point
is reached where ‖F‖ < ε.

(b) Compute the target point on the fine grid.
(i) Predictor: Use the target point obtained in (a) as

the predicted point.
(ii) Make a correction on the fine grid by solving the

linear approximation of F (W ,μ) = 0.
(iii) Use the corrected point as an initial guess, and

perform the Newton corrector until the target
point on the fine grid is reached.

Step 2. Set k = k + s1.
If k � 0.5, go to Step 1.
Else if k > 0.5, set k = 0, and c = c + s2.

If c < 0.2, go to Step 1.
Else if c = 0.2, stop.
End if

End if

As we may see from Fig. 1 in [5], there exist two eigenstates
at the cusp points of the Bloch wave where c = 0.2 and k = ±0.5.
One of them has linear counterpart, and the other does not have
linear counterpart. At the second stage of the continuation algo-
rithm, we will show how the eigenstate without linear counter-
part may be obtained using the information of the SEP. To start
with, we choose c = 0.2 and k = 0.5. Then we use the first stage
continuation algorithm to trace the solution curve of (4.1) branch-
ing from the first bifurcation (p,q,μ∗) = (0,0,μ∗), where μ∗ is
the minimum eigenvalue of the linear eigenvalue problem associ-
ated with (4.1). We stop the curve-tracking whenever the target
point is reached. Note that at the target point both eigenstates
with/without linear counterparts have the same values in the do-
main Ω . Denote the target point by Z (0) = (W ,μ∗,0.5), where
W = (P , Q ). Now we wish to compute the closed loops in some
neighborhoods of k = ±0.5. Note that for any wavenumber k in
these neighborhoods, the corresponding chemical potential is not
unique. Therefore the parameters μ and k must be treated as the
continuation parameters simultaneously, where the corresponding
nonlinear mapping is given by F : R2N+2 → R2N . In addition to us-
ing the unit tangent vector as the first constraint condition, we
also need to use the mass conservation constraint (1.9) as the sec-
ond constraint condition. We express the discrete analogue of (1.9)
as

F3(P , Q ,μ,k) = −1

2

(
P T · P + Q T · Q

) + π

h
= 0, (4.10)

and perform the Taylor predictor with k as the continuation pa-
rameter and with stepsize τ . The Fréchet derivative of F is de-
noted by DF = [D(W ,μ) F , Dk F ] ∈ R2N×(2N+2) , where the princi-
pal 2N × 2N submatrix is just DW F in (4.4). Note that Dk F =
[B Q + kP ,−B P + kQ ]T . Now we add the unit tangent vector

v := [Ẇ , μ̇,0]
‖[Ẇ , μ̇,0]‖

obtained in the previous continuation step, and DF3 =[−P −Q
0 0] as the last two rows for DF , and obtain the augmented Ja-
cobian matrix

H =
[ DF

DF3
vT

]
∈ R(2N+2)×(2N+2). (4.11)

Subsequently we perform the Newton corrector

H

[
δW
δμ
δk

]
=

[ −F (S(1))

−F3(S(1))

0

]
, (4.12)

where the predicted point S(1) is used as an initial guess and
the unknown vector [δW , δμ, δk]T denotes the increment on each
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component. If the Newton iterates converge to an approximate so-
lution Z (1) of F , then we go to the next continuation step and
perform the second order Taylor predictor as above. Note that the
value of k will be changed in the corrector. We repeat the process
mentioned above until the closed loop is obtained.

Algorithm 4.3. The second stage continuation for the closed loops.

Input:
τ := step size in the second order Taylor predictor.
c := 0.2, ν := 0.1, k := 0.5.

Step 1. Use Algorithm 4.2 to compute the ground state solution
Z (0) = (W ,μ∗,0.5) of (4.1).

Step 2. (i) Treat both μ and k as the continuation parameter si-
multaneously.

(ii) Use the second order Taylor predictor to obtain the
predicted point S(1) .

(iii) Newton corrector. Solve (4.12) until convergence, and
obtain the approximate solution Z (1) .

Step 3. If the closed loop is not obtained, then set Z (0) := Z (1) and
go to Step 1.
Else

stop.
End if

4.3. 2D problem

We consider the 2D nonlinear eigenvalue problem in a periodic
potential

−1

2
�ψ(x) + ν[cos x + cos y]ψ(x) + c

∣∣ψ(x)
∣∣2

ψ(x) = μψ(x),

Ω = (0,2π)2, c ∈ [0,0.3],
ψ(x, y) = ψ(x + 2π, y) = ψ(x, y + 2π),

x = (x, y) ∈ Ω, (4.13)

with constraint∫
Ω

∣∣ψ(x)
∣∣2

dx = νΩ = 4π2. (4.14)

Eq. (4.13) has the following Bloch wave solutions

ψ(x) = eik·xφk(x), (4.15)

where φk(x, y) satisfies

φk(x, y) = φk(x + 2π, y) = φk(x, y + 2π) (4.16)

and k = (kx,ky) is the Bloch wave vector with kx,ky ∈ [− 1
2 , 1

2 ].
Similar to the derivation of (1.8), we have

−1

2
(∇ + ik)2φk(x) + ν[cos x + cos y]φk(x) + c

∣∣φk(x)
∣∣2

φk(x)

= μφk(x), x ∈ Ω, (4.17)

where φk(x) is a complex function. Similar to the discussions in
Section 4.1, let

φk(x) = p(x) + iq(x), (4.18)

where p(x) and q(x) are two real functions. The real part and
imaginary part of (4.17) can be expressed as

−1

2
�p + (kx · qx + ky · qy) + 1

2

(
k2

x + k2
y

)
p + ν(cos x + cos y)p

+ c
(

p2 + q2)p = μp,

−1

2
�q − (kx · px + ky · p y) + 1

2

(
k2

x + k2
y

)
q + ν(cos x + cos y)q

+ c
(

p2 + q2)q = μq, in Ω,

p(x, y) = p(x + 2π, y) = p(x, y + 2π),

q(x, y) = q(x + 2π, y) = q(x, y + 2π), (x, y) ∈ Ω. (4.19)

As we may see from (4.19) that the eigenvalue μ depends on
the wavenumbers kx and ky . That is, μ = μ(kx,ky) is a function
of two variables. Thus the Bloch bands for the 1D problem will
be replaced by the Bloch surfaces for the 2D problem. Now Al-
gorithm 4.2 can be modified to compute the Bloch surfaces for
the 2D problem with linear counterparts except that we have four
continuation parameters μ, kx , ky , c, where kx,ky ∈ [−0.5,0.5]. To
compute the two closed loops for the Bloch surface at kx = ky =
0.5, we rewrite the discrete formulation of the first two equations
in (4.19) as

F̂1(P , Q ,μ,kx,ky) = 0, F̂2(P , Q ,μ,kx,ky) = 0. (4.20)

Note that compared to (4.2) we have one additional parameter.
However, the constraint conditions for the 2D and 1D problems are
the same. The difficulty can be easily overcome by fixing one of the
wavenumber, say at ky = 0.5, and treating μ and kx as the contin-
uation parameters simultaneously. Thus (4.20) can be solved using
analogous algorithms for the 1D problem. Similarly we may ob-
tain another closed loop by fixing kx = 0.5 and treating μ and ky
as the continuation parameters simultaneously. The closed loops
at the other three corners of the Bloch surface with c = 0.3 can
be obtained in a similar way. To compute eigenstates without lin-
ear counterparts at one of the four edges of the Bloch vectors, say
ky = 0.5, kx ∈ [−0.5,0.5], we treat kx as the continuation parame-
ter. Then Algorithm 4.3 can be modified to compute closed loops
at the edge ky = 0.5. Closed loops at the other edges could be ob-
tained in a similar way.

5. Numerical results

Algorithms 4.2 and 4.3 were implemented to compute the Bloch
bands and Bloch surfaces of the GPE in 1D and 2D. The accuracy
tolerance for the Newton corrector is 10−8. All computations were
executed on a Pentium 4 PC using Matlab language.

Example 1 (1D problem). We discretized (4.1) using the centered
difference approximation with uniform meshsize h = 0.01 in Ω =
(0,2π). Algorithm 4.2 was implemented to compute the eigen-
states of (1.8) with linear counterparts, and obtained the Bloch
bands without closed loops. Next, we applied Algorithm 4.3 to
compute the closed loops at k = ±0.5. Fig. 1 shows the low-
est Bloch bands of (1.8). The result is exactly the same as Fig. 1
in [5]. Fig. 2 displays the contours of the real part and imagi-
nary part of φk at the target point with ν = 0.1, c = 0.2, k = 0.5
and μ ≈ 0.3249981. Fig. 3 shows the Bloch wave of (4.1) near the
closed loop at k = 0.5. The lower curve and the upper one are
obtained by the first stage and the second stage continuation, re-
spectively.

Example 2 (2D problem). We discretized (4.19) using the cen-
tered difference approximations with uniform meshsize h = 2π

48 .
First we applied the modification of Algorithm 4.2 to compute
the eigenstates of (4.19) with linear counterparts. Then we ex-
ploited the modification of Algorithm 4.3 to compute the closed
loops at the four corners (kx,ky) = (±0.5,±0.5) and the four
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Fig. 1. Lowest Bloch bands at ν = 0.1 for c = 0.0,0.05,0.1 and 0.2.

Fig. 2. The curves of the real and imaginary parts of φ at the target point with
ν = 0.1, c = 0.2, k = 0.5 and μ ≈ 0.3249981.

Fig. 3. The Bloch wave of (4.1) represented by the 3D contour near the closed loop
where ν = 0.1 and c = 0.2. The lower curve and upper curve are obtained by the
first stage and second stage continuation, respectively.

Fig. 4. The Bloch surfaces with ν = 0.2.

edges kx = ±0.5, ky = ±0.5. That is, we computed the eigen-
states of (4.19) without linear counterparts. Fig. 4 shows that the
Bloch surfaces are getting sharper at the four corners (kx,ky) =
(±0.5,±0.5) as c increases from 0 to 0.3. Moreover, the four edges
of the Bloch vector k are surrounded by closed tubes. In par-
ticular, at the four corners (kx,ky) = (±0.5,±0.5) there are two
closed loops. Fig. 5 displays the contours of the real part and
imaginary part of φk , and |φk|2 with linear counterparts at the
target points with ν = 0.2, k = (kx,ky) = (0,0.5) where c = 0
and 0.3. Fig. 6 shows the contours of the real part and imagi-
nary part of φk and |φk|2 with linear counterparts at the target
points with ν = 0.2, k = (0.5,0.5), and c = 0, μ ≈ 0.0326021 (left),
and c = 0.3, μ ≈ 0.5412584 (right). Fig. 7 shows the contours
of the real part and imaginary part of φk and |φk|2 without lin-
ear counterparts at the target points with ν = 0.2, k = (0.5,0.5),
and c = 0, μ ≈ 0.0326021 (left), and c = 0.3, μ ≈ 0.5412584
(right).

6. Conclusions

We have proposed two-stage Taylor predictor–Newton correc-
tor continuation algorithms for computing Bloch bands and Bloch
surfaces of 1D and 2D BEC in optical lattices. At the first stage
continuation algorithm the eigenpairs of the linear Schrödinger
equation have been used as initial guesses for computing their lin-
ear counterparts. At the second stage continuation algorithm both
Algorithms 4.2 and 4.3 have been implemented to compute eigen-
states without linear counterparts. In other words, we also need
the information of the SEP and the eigenstates of the GPE with
linear counterparts to compute eigenstates without linear counter-
parts.
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