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Two Critical velocities for a superfluid in a periodic potential
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In contrast to a homogeneous superfluid which has only one critical velocity, there exist two critical
velocities for a superfluid in a periodic potential. The first one, which we call inside critical velocity,
is for a macroscopic impurity to move frictionlessly in the periodic superfluid system; the second,
which is called trawler critical velocity, is the largest velocity of the lattice for the superfluidity to
maintain. The result is relevant to the superfluidity observed in the Bose-Einstein condensate in an
optical lattice and supersolid helium.
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One characteristic feature of superfluidity is the exis-
tence of critical velocity. According to Landau’s theory of
superfluidity[1], this critical velocity is given by the speed
of sound. In developing his theory, Landau had his focus
on a homogeneous superfluid, which has continued to be
the focus of later studies[2, 3]. Experimental advances
in recent years have brought to people’s attention a dif-
ferent type of systems, superfluids in periodic potentials.
They include a Bose-Einstein condensate (BEC) in an op-
tical lattice[4] and supersolid helium[5]. In the BEC sys-
tem, the lattice is created by counter-propagating laser
beams. For supersolid helium, the superfluid is defects
(vacancies or interstitials) in the lattice self-assembled by
helium atoms as commonly believed[6, 7]. Interestingly,
the crust of a neutron star can also be considered as a
superfluid in a lattice[8, 9]. In addition, it is expected
that the superfluidity of a paired Fermi gas in an optical
lattice will be a subject of intensive investigation[10].

In this Letter we show that the presence of the pe-
riodic potential has non-trivial consequences, requiring
a revisit of the concept of critical velocity. In contrast
to the homogeneous superfluid which has only one crit-
ical velocity, there are two distinct critical velocities for
a superfluid in a periodic potential. The first one, which
we call inside critical velocity, is for an impurity to move
frictionlessly in the periodic superfluid system (Fig.1(a));
the second, which is called trawler critical velocity, is
the largest velocity of the lattice for the superfluidity to
maintain (Fig.1(b)). These two critical velocities will be
illustrated with a BEC in a one-dimensional optical lat-
tice.

The presence of the periodic potential plays a decisive
role in the appearance of the two critical velocities. Be-
cause of the addition of a periodic potential, two very
different situations can arise in the superfluid system.
The first situation is described in Fig.1(a), where one
macroscopic impurity moves inside the superfluid. The
key feature in this situation is that there is no relative
motion between the superfluid and the periodic potential.
Fig.1(b) illustrates the other situation, where the lattice
is slowly accelerated to a given velocity and there is a
relative motion between the superfluid and the periodic

potential. For these two different situations, naturally
arise two critical velocities.
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v
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FIG. 1: (a) A macroscopic obstacle moves with a velocity of v

inside a superfluid residing in a periodic potential. The curly
brace indicates that the superfluid and the periodic potential
are “locked” together and there is no relative motion between
them. (b) The lattice where a superfluid resides is slowly
accelerated to a velocity of v.

Both critical velocities can be measured with BECs in
optical lattices. The inside critical velocity vi can be mea-
sured with the same experimental setting as in Ref.[11],
where the superfluidity of a BEC was studied by moving
a blue-detuned laser inside the BEC. For the trawler crit-
ical velocity vt, one can repeat the experiment in Ref.[12]
where a BEC is loaded in a moving optical lattice. One
only needs to shift his attention from dynamical insta-
bility to superfluidity. For solid helium, only the trawler
critical velocity can be measured.

It is instructive to briefly review Landau’s theory of
critical velocity for superfluid before further discussion[2].
Consider a superfluid moving inside a small tube with a
velocity of v as in Fig.2. Suppose a single elementary
excitation is generated and its energy is ε0(p) and mo-
mentum is p in the superfluid frame where the superfluid
is at rest, then by the usual Galilean transformation, we
have the excitation energy:

ε(v,p) = ε0(p) − v · p , (1)

in the reference frame where the tube is motionless. Lan-
dau argues that if ε(v,p) is negative for some excitations,
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these excitations are energetically favored to be gener-
ated and, therefore, the superfluidity is unstable. Since
the low energy excitations are phonons ε0(p) = up, it is
clear that ε(v,p) can be negative only when v > u. This
implies that the sound speed u is the critical velocity
beyond which the superfluid becomes normal fluid.

v

����������������������������
����������������������������
����������������������������
����������������������������

��������������������������������������
superfluid

FIG. 2: A superfluid moves inside a small tube with a velocity
of v.

It is clear that the “tube” frame holds a special position
in Landau’s theory. It is only in this frame the tube does
not disturb the system so that the normal fluid consisting
of the excitation “gases” can be in a thermal equilibrium
with the environment [13]. However, in the presence of
the periodic potential, the disturbance can be from either
the external impurity (Fig. 1(a)) or the imperfection of
the periodic potential (Fig. 1(b)), and one needs to define
the different “tube” frames for the different scenarios.
For this reason and convenience of our future discussion,
we call such a frame as thermodynamics frame.

We focus first on the situation of Fig.1(a), where a
macroscopic obstacle moves inside the periodic super-
fluid with a velocity v. We follow closely Landau’s
argument[2] and start our discussion in the superfluid
frame where the superfluid is at rest. In such a peri-
odic system, the elementary excitation (quasi-particle)
is characterized by quasi-momentum q and the Bloch-
band index n. If the excited state is described by the
wavefunction Ψnq, then its energy and momentum are,
respectively,

εn(q) = 〈Ψnq|Ĥ|Ψnq〉 − E0 , (2)

pn(q) = 〈Ψnq|p̂|Ψnq〉 , (3)

where Ĥ is the Hamiltonian of system with E0 being the
ground state energy. p̂ =

∑
j pj is the total momentum

operator of the system. Note that without the periodic
potential one would have simply p = h̄q. With the pe-
riodic potential, this simple relation no longer holds. In
the thermodynamic frame in which the obstacle is mo-
tionless, the Hamiltonian of the system is transformed
to:

Ĥ ′ = Ĥ − v · p̂ +
1

2
Mv2 (4)

where M is the total mass of the system. The excitation
energy in this frame reads,

ε′n(v,q) = 〈Ψnq|Ĥ
′|Ψnq〉−E

′

0 = εn(q)−v ·pn (q) , (5)

where E′

0 = E0 + Mv2/2 is the ground state energy in
the thermodynamics frame. This excitation energy de-
termines the stability of the system. If it is positive for

all values of q and band index n, then the excitation of
quasi-particles is not energetically favored and the sys-
tem is a superfluid. Otherwise, the quasi-particles can
be generated spontaneously and the liquid flow experi-
ences viscosity. We can thus define a critical velocity,
beyond which ε′n(q) can be negative for some values of
n, q. This critical velocity vi is given by

vi = Minimum of
εn(q)

|pn(q)|
. (6)

We call vi inside critical velocity to distinguish it from
the other critical velocity that we shall discuss next.
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FIG. 3: (a) Energy ε0(q) and (b) momentum p(q) of a quasi-
particle for a BEC in a one-dimensional optical lattice. The
dashed line in (a) is for up(q) with u being the sound speed.

We take a look at an example, a BEC in a one-
dimensional optical lattice. We treat such a system with
the standard Gross-Pitavskii equation,

i
∂

∂t
ψ = −

1

2

∂2

∂x2
ψ + v(cosx)ψ + c|ψ|2ψ . (7)

In the above equation, the energy is in units of
4π2h̄2m/a2, the unit of the momentum is 2πh̄/a, and
q is measured in units of π/a (a is the period of the op-
tical lattice). For the details of the unit system, please
refer to Ref.[14]. Following the procedure in Ref.[14],
we can compute its Bogoliubov excitations and, conse-
quently, the energies and momenta of these excitations.
Plotted in Fig.3 are the energy and momentum of the
quasi-particle in this simple system. We see from this fig-
ure that the dashed line for up(q) lies completely under
ε(q). This means that the critical velocity vi is exactly
the sound speed u in this simple example.

The motion of an impurity inside a superfluid has
been studied for a long time by moving ions inside liquid
helium[15]. This technique was used to verify Landau’s
original criterion of superfluidity[16], which is impossible
to verify by flowing superfluid helium inside a small tube
as one would generate vortex and turbulence and destroy
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superfluidity well before the superflow reaches the sound
speed[3]. More recently, an obstacle created by a blue-
detuned laser beam was moved back and forth inside a
rather homogeneous BEC to test its superfluidity[11]. We
believe that this technique can also be used to measure
the inside critical velocity for a BEC in an optical lattice.
On the theoretical side, the motion of an impurity in a
homogeneous superfluid was studied by Girardeau, who
found the “onset of acoustical wave drag as the impurity
speed reaches the speed of sound”[17].

We study now the case depicted in Fig.1(b), where the
lattice is accelerated slowly to a given velocity v. In
this case, the thermodynamics frame is the frame that
moves along with the lattice. Viewing from the thermo-
dynamics frame, the slow acceleration induces an adia-
batic evolution of the Bose-Einstein condensation from
the Bloch state at Γ point (k = 0) to a Bloch state with
non-vanishing Bloch wave vector k = −mv/h̄ [18, 19].
The same effect can be achieved by slowly turning on a
moving lattice[12]. The excitation energy in the thermo-
dynamics frame can be obtained in a similar way as that
in Eq. (2), albeit the “ground state” for the present case
has a macroscopic condensation at nonzero k. We thus
have,

ε̃′n(v,q) = 〈Ψnq;k|Ĥ |Ψnq;k〉 − Ẽ0(k) , (8)

where Ẽ0(k) is the energy of the ground state and |Ψnq;k〉
denotes the excitation state with quasi-momentum q. We
note that in the present case both the ground state and
the excitation state have dependence on the condensa-
tion momentum k ≡ −mv/h̄. As a result, the excitation
energy ε̃′n(v,q) depends on both the velocity v of the
periodic potential and the quasi-momentum q of the ex-
citation. The stability of the superfluid phase can be
determined in the same spirit as that in the first case:
if ε̃′n(v,q) can be negative for some finite q, then the
superfluidity is lost. The critical velocity for this situ-
ation is given by the smallest v such that ε̃′n(v,q) = 0
for some finite q. We denote it as vt and call it trawler
critical velocity. This trawler critical velocity is related
to the Landau instability discussed with the mean-field
Gross-Pitaevskii equation in Ref.[20, 21, 22]. Here in
this Letter, this Landau instability is discussed in a more
general setting.

It is easy to demonstrate that the trawler critical ve-
locity is different from the inside critical velocity. We
consider a limiting case that the critical velocity is de-
termined by the low energy phonon excitation (which
means that vt is necessary to be small). In this case,
we can limit our consideration in the lowest Bloch band,
and the full Hamiltonian of the system can be mapped
to an effective one in which the boson moves in the free
space (without the periodic potential) but with the renor-
malized dispersion E(p) of the lowest Bloch band. For
p ≈ 0, E(p) ≈ p2/2m∗ with m∗ being the effective mass.

The effective Hamiltonian in the thermodynamics frame
has the form

Ĥ ′ =
∑

j

(p̂j + h̄k)2

2m∗
+ H̃int ,

= Ĥ0 −
m

m∗
v · p̂ +

Nm∗

2
v2 . (9)

where Ĥ0 is the effective Hamiltonian in the superfluid
frame and H̃ is the interaction potential projected in the
lowest Bloch band. When an elementary excitation with
quasi-momentum h̄q is generated, its energy is according
to Eq.(9)

ε̃′(v,q) = ε0(q) − h̄
m

m∗
v · q , (10)

where ε0(q) ≈ uh̄q is the phonon excitation energy in
the superfluid frame. It is clear that superfluidity is lost
when v > m∗u0/m. So, the critical velocity is

vt =
m∗

m
u0 , (11)

which is different from the inside critical velocity vi. Note
that the velocity mv/m∗ in Eq.(10) is the group velocity
of the superfluid.
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FIG. 4: Inside critical velocity vi and trawler critical velocity
vt of a BEC in a one dimensional optical lattice as functions
of the lattice strength v. (a) c = 0.02 (b) c = 0.1. The solid
line is for vi and the circles with dashed line represent vt.

We now demonstrate these two critical velocities, with
the simple example, a BEC in a one-dimensional optical
lattice. When this system is in the superfluid state, it
can be well described by the mean-field Gross-Pitaevskii
equation as in Eq.(7). We can find both critical veloci-
ties by numerically computing the Bogoliubov spectrum
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of this system as in Ref.[14]. We have computed two dif-
ferent cases: in one case the Bloch states corresponding
to the trawler critical velocity are close to the Γ point;
in the other these Bloch states are far away from the Γ
point. For the first case, the results are shown in Fig.4(a),
where we see these two velocities have different trends:
the inside critical velocities vi decreases with the lattice
strength while the trawler critical velocity increases. In
the other case, both critical velocities decrease with the
lattice strength.

For supersolid helium, the critical velocity has not
been measured up to date. The “critical velocity” (3.6-
38µm/s) measured by Kim and Chan[5] is likely asso-
ciated with the vortex quantization in the annular con-
tainer. We are aware that the supersolid helium is a
highly controversy topic at present[23].

In summary, we have tried to answer a simple ques-
tion, “What is the critical velocity for a superfluid in a
periodic potential?” The answer depends on the way how
the critical velocity is probed. If you probe it by moving
an impurity inside the BEC, you have the inside critical
velocity; if you probe it by moving the lattice, you ob-
tain the trawler critical velocity. These two velocities are
different in nature and generally in values. For a BEC in
an optical lattice, both critical velocities are measurable
with current experimental techniques[11, 12].
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