
This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 18.7.29.240

This content was downloaded on 12/06/2014 at 15:45

Please note that terms and conditions apply.

Quantum thermalization and equilibrium state with multiple temperatures

View the table of contents for this issue, or go to the journal homepage for more

2014 Laser Phys. Lett. 11 085501

(http://iopscience.iop.org/1612-202X/11/8/085501)

Home Search Collections Journals About Contact us My IOPscience

iopscience.iop.org/page/terms
http://iopscience.iop.org/1612-202X/11/8
http://iopscience.iop.org/1612-202X
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


1 © 2014 IOP Publishing Ltd  Printed in the UK

Introduction

The realization of Bose–Einstein condensation has not only 
verified experimentally Einstein’s prediction in 1925 but also 
provided experimental platforms and stimulations for many 
new developments in physics [1]. Bose–Einstein condensates 
(BECs) can be regarded as an isolated quantum system and 
can be described very well by a pure wave function. This fea-
ture has stimulated growing efforts, both experimental and 
theoretical, to address the thermalization of isolated quantum 
systems, a fundamental issue in quantum statistical mechan-
ics that had remained largely dormant for many decades. 
Experimentalists have demonstrated that a BEC can be put in 
a high-energy state while keeping coherence for a long enough 
time to study relaxation [2]. Theorists numerically studied the 
highly-excited eigenstates of an interacting boson system and 
found clear thermalization behavior [3]. 

Great progress has been made in these renewed efforts  
[3–34]. However, there is much more to be desired. For exam-
ple, will the improved understanding of the foundation of 
quantum statistics result in new physics?

We are motivated by the developments in the field of 
ultra-cold atoms and try to address the issue of quantum ther-
malization. We shall follow a theoretical framework estab-
lished by von Neumann in 1929 [35], where he formulated 
a micro-canonical ensemble which was different from the 
one in standard textbooks. The conventional micro-canonical 
ensemble is usually established with two postulates, equal a 
priori probability and random phases, which are either explic-
itly or inexplicitly stated in standard textbooks [36, 37]. In this 
standard micro-canonical ensemble, every energy eigenstate 
is equally possible in a narrow energy range. Interestingly, von 
Neumann formulated a different micro-canonical ensemble 
for quantum statistical physics in a 1929 paper [35], where he 
proved both the quantum ergordic theorem and the quantum 
H-theorem ‘in full rigor and without disorder assumptions.’ 
For some reason, von Neumann’s work had been forgotten for 
a long time [38]. von Neumann’s micro-canonical ensemble 
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is established dynamically and is determined by initial condi-
tions as we shall explain in detail later.

The quantum ergodic theorem proved by von Neumann 
is mathematically an inequality [35]. A different version of 
this inequality, which is more practical and well defined, was 
proved by Reimann [8]. According to these two inequalities (or 
quantum ergodic theorem), these quantum systems will equili-
brate in the sense that fluctuations are very small almost all 
of the time. Both inequalities can only be applied to systems 
where there are no degenerate energy-gaps. In this work we 
first show that this quantum ergodic theorem may be applied 
to a broader class of systems, which include, for example, 
quantum chaotic systems [39–41]. This is done by example. 
We numerically study the dynamics of a quantum chaotic sys-
tem, the Henon–Heiles system [42], which has no bound states 
and does not satisfy the non-degenerate energy-gap condition 
established by von Neumann and Reimann. Nevertheless, 
we find that the Henon–Heiles system still equilibrates in the 
sense of small fluctuations. Furthermore, our numerical results 
show that the equilibration is also accompanied by an entropy 
approaching maximum. This is in agreement in spirit with von 
Neumann’s quantum H-theorem [35].

We then prove analytically that a subsystem of an isolated 
quantum system at equilibrium is thermalized such that it is 
described by the Gibbs distribution. Here we distinguish equi-
libration and thermalization: a system equilibrates if its over-
all features no longer change with time while it still evolves 
microscopically. Thermalization is only applicable for a sub-
system that is described by the Gibbs distribution. A thermal-
ized system must be at equilibrium but not vice versa.

A natural and surprising outcome of this theoretical frame-
work is that a subsystem can thermalize with multiple distinct 
temperatures. This can happen when the isolated system is in 
a superposition of energy eigenstates that concentrate around 
different energy scales. This thermalized system with mul-
tiple temperatures appears unavoidable for two reasons. (1) 
According to the quantum ergodic theorem [8, 35], the equili-
brated state has the same energy distribution as the initial state. 
One can manipulate the energy distribution by choosing a suit-
able initial condition. (2) There is no a priori reason that an 
initial state must be in a state which is composed only of energy 
eigenstates from a narrow energy range. We emphasize that this 
multi-temperature state is at equilibrium where both hot and 
cold exist in one system: (i) it is completely different from a 
state that is out of equilibrium and has different temperatures at 
different parts of the system or for its different degrees of free-
dom. (ii) It is also different from an ensemble of systems where 
some systems have higher temperatures while others have lower 
temperatures. We discuss feasible experimental schemes with 
ultra-cold atoms and nuclear spins to confirm our predication.

Equilibration of an isolated quantum chaotic 
system

The inequality proved for the quantum ergodic theorem by 
Reimann [8] was slightly modified by Short et al [12, 13]. 
This inequality for an observable A now reads

σ ≡ ⩽ρ ρ⟨∣ − ∣ ⟩∞ ,A
A t A

A d
2 tr{ ( )} tr( ) 1t

2

2
eff

� (1)

where ρ(t) = ∣ψ(t)〉〈ψ(t)∣ with ∣ψ(t)〉 = ∑kck∣Ek〉 being the wave 
function of the isolated system and ρ∞ = ∑k ∣ck∣2∣Ek〉〈Ek∣. ∣Ek〉 
is the energy eigenstate of the system. The subscript t in 〈〉t 
represents an averaging over a time period much longer than 
the characteristic time scale of the system. ‖A‖ is the maxi-
mal eigenvalue of A regarding all the states in the Hilbert 

space. The effective dimension 
∑ ρ

=
∣ 〉〈 ∣

d
E E t

1

(tr ( ) )
k

k k

eff
2

 

indicates how widely the state ∣Ψ〉 is spread over the energy 
eigenstates. This inequality holds for a large class of quantum 
systems that satisfies the non-degenerate energy-gap condi-
tion in [8, 35].

If a quantum system is in a typical state of high energy, then 
deff should be large since the density of states usually increases 
tremendously with energy. This means that the right hand side 
of equation (1) is small. Therefore, this inequality tells us two 
things: (i) an isolated quantum system in a high-energy state will 
eventually relax to a state where an observable will fluctuate in 
small amplitude around its averaged value. (ii) Although the 
isolated quantum system is described by a wave function, the 
expectation value of any observable A at almost any moment can 
be computed with ρ∞, that is, tr(ρ A) ≈ tr(ρ∞A).

Some remarks are warranted here. (1) ρ∞ is different from 
the standard micro-canonical density matrix in textbooks 
[36, 37]: the coefficients ∣ck∣2’s are determined by the initial 
condition and they are not necessarily equal to each other and 
distributed in a narrow energy range. (2) The coefficients ∣ck∣2’s 
do not change with time; therefore, the energy distribution of 
the final equilibrated state is the same as the initial state.

For many physicists, small fluctuations already imply 
equilibrium; however, for others, a state is equilibrated only 
when its entropy is maximized. For the latter group, even 
though ground states and other eigenstates have no fluctua-
tions, they cannot be regarded as equilibrium. von Neumann 
belongs to the latter group. By introducing an entropy for a 
pure state [35], he proved the quantum H-theorem, which 
demands that a low-entropy state evolves into a high-entropy 
state. We address this entropy issue with an example by 
defining a special entropy for pure states in the single par-
ticle Henon–Heiles system [42]. This is in spirit similar to 
the entropy for a pure state introduced by von Neumann, for 
which there is no known practical procedure to compute so 
far. Note that this entropy for a pure state introduced by von 
Neumann in 1929 is different from the usual von Neumann 
entropy, which is zero for all pure states.

We emphasize that it is reasonable to use a single-particle 
quantum chaotic system for illustration. When expressed in 
the form of a matrix, there is no essential difference between a 
one-body Hamiltonian and a many-body Hamiltonian as long 
as they belong to the same class of random matrix [39]. This 
is particularly true for the system’s energy spectrum, which 
appears to be the only factor in determining whether the sys-
tem equilibrates or not [8, 35]. We expect that the one-body 
and many-body systems share many dynamical features when 
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their corresponding matrices belong to the same class. More 
discussion on this point can be found in [43].

The Hamiltonian of the system for the Henon–Heiles sys-

tem is 
α λ= + + + −H p m x y x y y/ 2
2

( ) ( / 3)2 2 2 2 3 , which has 

three saddle points located at a distance 
α
λ

≡rc  from the origin. 

These three points are the corners of the energy triangular con-

tour with the potential 
α
λ

≡V
6

c

3

2
 as shown in figures 1(a1)–(a5). 

The momentum corresponding to the saddle point energy is 
≡p mV20 c as indicated by the circle in figures 1(b1)–(b5). In 

our numerical simulation we set =m
1

2
, ℏ = 1, and α/λ = 1/3.

The initial condition is a highly localized Gaussian wave 
packet as shown in figures 1(a1) and (b1) so that the system 
energy is high. This wave packet is centered at ⃗ =r r(0.3, 0)i c 
and ⃗ = ° °p p(cos10 , sin10 ) 7 / 10i 0 in the real and momen-
tum spaces, respectively. A classical particle with ⃗ri  and ⃗pi  
has energy 0.9691Vc and its motion is fully chaotic.

We numerically solve the Schrödinger equation and the 
dynamical evolution of the wave packet is illustrated in 
figures 1(a1)–(a4) and (b1)–(b4). As the wave packet evolves, 
it begins to spread out and distort in shape. Eventually it 
reaches an equilibrium state, where the wave packet spreads 
out all over the classically allowed region in the real space 
and the momentum space. This overall feature will no longer 
change even though the details of the wave packet still change 
in the following dynamical evolution. For comparison, we have 
calculated ⃗ ⃗ ⃗ρ= 〈 ∣ ∣ 〉∞ ∞n r r r( )  and ⃗ ⃗ ⃗ρ= 〈 ∣ ∣ 〉∞ ∞n p p p( )  by 
long-time averaging, i.e., the equilibrium state obtained by 
Reimann [8]. The results are shown in figures 1(a5) and (b5). 
It is clear that ⃗∞n r( ) and ⃗∞n p( ) are very similar to the wave 
packet at t = 0.2126 with the same overall feature that the wave 
function is spread all over both the triangular spatial region 
and the circled momentum region except for some fluctuations.

To demonstrate that the system has relaxed 
to an equilibrium state, we define an entropy as 

⎛
⎝
⎜

⎞
⎠
⎟ ⃗ ⃗∫ ξ ξ

ξ
ξ

ξ
ξ= − =  ξ

∞ ∞
S

n t

n

n t

n
r pd

( , )
( )

ln
( , )

( )
, , . This entropy 

indicates how wide spread the wave function is in the clas-
sically-allowed region. The time evolution of Sξ is shown in 
figures 2(a1) and (a2), where we see clearly the entropies 
quickly saturate and reach the maximum values, indicating 
that an equilibrium state is reached. Note that the relaxation 
times, in both real and momentum spaces, are about the same. 
However, it must be pointed out that this definition of entropy 
applies only for some special systems and does not apply for a 
general quantum system. It is in spirit in accordance with the 
entropy for a pure state introduced for a general system by von 
Neumann [35].

The equilibrium state reached is consistent with the ine-
quality equation (1). To check the inequality numerically, one 
needs to compute energy eigenstates of the system. As it is 
difficult to compute the eigenstates for the Henon–Heiles sys-
tem, we have turned to the ripple billiard system studied in 
[23, 44] to verify the inequality. The verification is successful 
and the detailed computation can be found in [43]. We only 

Figure 1. Time evolution of a wave-packet and the long-time average in the Henon–Heiles system. The first row is the density in the real 
space and the second row is the density in the momentum space. The long-time averages of these densities are shown at the rightmost 
panels. The average is taken over 1200 states equally separated in the time interval of [0.2012, 0.2255]. The unit for the real space is rc and 
the unit for the momentum space is p0. The red lines in the first row are energy contours of the Henon–Heiles potential at V(x, y)/Vc = 1/2, 
1, 2. The red lines in the second row are the maximal classically allowed momentum for the initial energy of the Gaussian wave packet. The 
color bars are given on the right side.

Figure 2. Time evolution of the entropies Sξ for the Henon–Heiles 
system for both spatial and momentum space.
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mention here that deff≈300 for a similar Gaussian wave packet 
in the ripple billiard system.

Note that the quantum ergodic theorem was originally 
proved by von Neumann and Reimann for systems that have 
no degenerate energy gaps [8, 35]. It was later generalized 
to systems that have a limited amount of degeneracy [13]. 
However, it is still not clear how these degeneracy conditions 
are related to the integrability of the systems. Our numeri-
cal simulations here and elsewhere [23, 43] suggest that this 
theorem may be applied in a much broader class of quantum 
systems, which include quantum chaotic systems.

Thermalization of subsystems

We have shown that a large class of truly isolated quantum sys-
tems, including chaotic systems, can relax to an equilibrium 
state. Now we decompose an equilibrated isolated quantum 
system into two parts, subsystem S and thermal bath B. We 
consider an operation tr(B), which traces out the thermal bath B 
and gives the density operator for the small subsystem S. Note 
the subsystem S is small compared with system S + B but still 
large on the microscopic level. Based on our equilibration pic-
ture, the subsystem S is also equilibrated. We shall show that, 
due to the coupling to the rest of the system, these equilibrated 
subsystems are also thermalized so that they are described by 
the Gibbs distribution. The derivation of Gibbs distribution for 
a subsystem has been considered before with the assumption 
that the isolated system is in a pure state composed of energy 
eigenstates from a small energy interval [26,  30]. We show 
that this assumption is not necessary and when the pure state 
is composed of energy eigenstates of different energy scales, 
the subsystem is thermalized with multiple temperatures.

We write the Hamiltonian of the isolated system as 
HS+B = HS+HB+ΔH, where ΔH is the weak interaction between 
system HS and thermal bath HB. Suppose that the composite 
system is described by a wave function ∑∣Φ 〉 = ∣ 〉+ +c Ek k

S B S B ,  
where ∣ 〉+Ek

S B  ‘s are the energy eigenstates of the composite 
system. By tracing out thermal bath B, we obtain the density 
operator for system S, ρS = tr(B)∣ΦS+B〉〈ΦS+B∣. The system will 
eventually equilibrate; ρS will be close to its long time aver-
age, i.e. ∑ρ ρ ρ≈〈 〉 ≡ = ∣ ∣ ∣ 〉〈 ∣∞

+ + +c E Etr trt k k k
S S (B) S B (B) 2 S B S B .

We expand the eigenstate ∣ +Ek
S B  as follows

∑∣ 〉≈ ′ ∣ 〉∣ 〉+E a E E ,k ij
k

i j
S B S B� (2)

where ∣ 〉Ei
S  and ∣ 〉Ej

B  are energy eigenstates of system S and 
thermal bath B, respectively. The above is an approximation 
because the primed summation is only over eigen-energies 
satisfying

= + + Δ+E E E E .k i j ij
S B S B� (3)

where ΔEij is the interaction energy that is usually very small 
compared to Ei

S and Ej
B when long-range interaction, e.g., grav-

ity, is negligible in the system. Two remarks are warranted. 
(i) The approximation made in equation (2) is justified. The 
equality holds when there is no coupling ΔH = 0. We expect 
it hold when the weak interaction ΔH is turned on. (ii) The 
weak interaction ΔH can drive the system to a state with aij

k ‘s 

randomly uniformly distributed on the sphere ∑ ∣ ∣ =a 1
ij

ij
k 2 .  

This random distribution is similar to the idea of ‘typicality’ 
[24, 25]. The connection between interaction and randomness 
is widely acknowledged since the details of the interaction is 

irrelevant to the statistical properties [45, 46]. As a result, the 

average value of ∣ ∣aij
k 2 is 

+ +D E

1

( )k
S B S B

, where + +D E( )k
S B S B  is the 

degeneracy brought by the combination of states. We emphasize 
that this degeneracy is different from the intrinsic degeneracy of 
the system and it is due to the existence of ΔEij in equation (3).

With the approximation made in equation (2), we now pro-
ceed with our derivation,

∑ ∑

∑ ∑ ∑

∑ ∑ ∑

∑ ∑ ∑

ρ = ∣ ∣ ⟨ ∣ ⟩⟨ ∣ ⟩

= ∣ ∣ ′ ′ ∣ ⟩⟨ ∣

= ∣ ∣ ∣ ∣ ∣ ⟩⟨ ∣

+ ∣ ∣ ′ ′ ∣ ⟩⟨ ∣

+ +

′

≠ ′
′

′

c E E E E

c a a E E

c a E E

c a a E E

*

* .

k
k

m
m
B

k k m
B

k
k

ii m
im
k

i m
k

i i

k
k

i m
im
k

i i

k
k

i i m
im
k

i m
k

i i

S 2 S B S B

2 S S

2 2 S S

2 S S

⎪ ⎪

⎪ ⎪
⎧
⎨
⎩

⎫
⎬
⎭

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

� (4)

The central limit theorem gives the results of the first summation  
as ∑ ∣ ∣ ≃ + +a D E D E( ) / ( )

m
im
k B

m k
2 B S B S B  and the second  

summation as ∑ ′
+ +a a O D E D E* ~ { ( ) / ( ) }

m im
k

i m
k B

m k
B S B S B

 

≃ + +O D E{1 / ( ) }k
S B S B  where D E( )B

m
B  is the degeneracy of 

the thermal bath and we have used that S is much smaller than 
B so that ≃ + +D E D E( ) ( )B

m k
B S B S B .

As a result, the last term in equation (4) has the order of 

magnitude at ∑ + +O D E D E{ ( ) / ( ) }
i

S
i k

2 S B S B , which is prac-

tically zero as the isolated system is much larger than system 

S. So, omitting the last term, we have from equation (4)

∑ ∑ρ = ∣ ∣ ∣ ⟩⟨ ∣+ +c
D E

D E
E E

( )

( )
.

k

k

i

B
m

k
i i

S 2
B

S B S B
S S� (5)

With the standard argument for the Gibbs distribution [37], we 
arrive finally at

∑ ∑ρ β= ∣ ∣ − ∣ ⟩⟨ ∣c E E Eexp( ) ,
k

k

i
k i i i

S 2 S S
⎪ ⎪

⎪ ⎪
⎧
⎨
⎩

⎫
⎬
⎭� (6)

where β ≡ ≡∂ ∂+ + +

k T
D E E

1
ln ( ) /k

k
k k

B

S B S B S B defines the tempera-

ture of the total system for eigenstate ∣Φ 〉+
k
S B . In this way, we 

have proved that a subsystem of an isolated equilibrated sys-
tem is thermalized.

Thermalized state with multiple temperatures

Here we examine equation (6) for two typical cases: (i) The coef-
ficients ∣ck∣2 of the composite system have a single sharp peak 
distribution around energy Ep. This case is considered by others 
[26] in different formalisms. For this case, the density matrix 
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ρS in equation (6) is reduced to ∑ρ β ψ ψ= − ∣ 〉〈 ∣Eexp( )
i p i i

S
i
SS .  

This is exactly the typical Gibbs distribution discussed in all 
textbook on statistical mechanics. (ii) The coefficients ∣ck∣2 
have two well-separated sharp peaks around two energies Ep1 
and Ep2. In other words, the composite system (or the heat 
bath) is in a superposition of numerous eigenstates centered 
around two very different energy scales. In this case, the ther-
malized system has two temperatures, β1 for Ep1 and β2 for 
Ep2, with the following density matrix

∑ρ = ∣ ∣ + ∣ ∣ ∣ 〉〈 ∣β β− −a e a E E( e ) ,
i

E E
i i

S
1

2
2

2 S Si i1 2� (7)

where ∣a1∣2 and ∣a2∣2 are the weights of the two distribution 
peaks. The following is a list of key points for a good under-
standing of this quantum equilibrium state with two different 
temperatures.

	 (a)	When the quantum heat bath is in a superposition of states, 
with two well-separated energy scales, each particle in the 
subsystem always feels different energy scales simultane-
ously when exchanging energy with the heat bath. This 
leads to a thermalized state with two different temperatures.

	 (b)	When a system is in such a state, it consists of two parts, 
one hot and one cold. However, one cannot tell which 
particle belongs to the hot part and which particle is in the 
cold part. This is analogous to liquid helium. It consists 
of a superfluid part and a normal fluid part; but no single 
helium atom can be assigned to either the superfluid part 
or the normal fluid part.

	 (c)	When an ideal gas is thermalized to such an equilibrium 
state with two temperatures, each particle in the gas can 
be roughly viewed as in a superposition state of two dif-
ferent momenta. This is impossible in a classical ideal 
gas, where each particle has a definite momentum.

	 (d)	Since the total system S+B is isolated, the coefficients ∣ck∣2s 
are constants and only depend on the initial condition. As a 

result, the two peaks in the initial distribution of ∣ck∣2’s will 
remain intact during the whole dynamical process. In other 
words, the system is stable with the double-peak energy 
distribution. Theoretically, it is legitimate to consider only 
truly isolated systems: if S + B is not truly isolated and is 
coupled to B′, one can always include B′ so that the larger 
system S + (B + B′) is truly isolated. However, in reality one 
may need to impose some external potential to engineer a 
desired state. In this kind of situation (one example with 
BEC is given later), the total system S + B is coupled to the 
external world via the external potential and it is too cum-
bersome to include the system that generate the external 
potential. In this situation, we call the total system S + B 
quasi-isolated.

	 (e)	If the total system S + B is a superposition of just two 
different energy eigenstates, the total system is not in an 
equilibrium state. This is because in this case deff  =  2 
and the left hand side of the inequality are both large. 
To ensure equilibration, we need deff ≫ 1; that is, to have 
a large number of eigenstates concentrating around two 
different energy scales.

	 (f)	This state does not describe a statistical ensemble of 
systems, where some systems are cold and some sys-
tems are hot.

	(g)	Our state is an equilibrium state with multiple tem-
peratures; it is completely different from the usual 
non-equilibrium state which has different temperatures 
for different parts.

	 (h)	Our state is not a Schrödinger cat state [48]; it does not 
collapse upon measurement. If a black body is prepared 
in such a two-temperature equilibrium state, the observed 
radiation should have two peaks: one peak for each 
temperature. If it were a cat state, the observed radiation 
would have only one peak: sometimes one peak for high 
temperature is observed; at other times the other peak for 
low temperature is observed.

Figure 3. Distributions of momentum amplitude of a relaxed BEC with two temperatures. (a) The two temperatures are of the same scale; 
(b) the two temperatures are of different scales, and a pronounced double-peak distribution is seen. The solid red line is for the two-
temperature distribution; the blue dashed line for the lower temperature; the green dashed line for the larger temperature.

(a) (b)

Laser Phys. Lett. 11 (2014) 085501
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For most of the systems that we have encountered in 
nature or studied in experiment, they are in contact with the 
classical heat bath. However, with the advance of technol-
ogy, we can now create large quantum systems which can 
serve as quantum heat baths. Two such examples are Bose–
Einstein condensates (BECs) and nuclear spins in a quan-
tum dot, where feasible experiments can be set up to test our 
prediction.

(i) Consider a two-species BEC. One species, with a large 
population, is trapped optically in an uneven double-well 
potential [47], while a smaller species is trapped in a single 
well potential. The larger species serves as a heat bath with 
two energy peaks due to uneven double-well potential. By 
exchanging energy with the larger species, the smaller spe-
cies should develop a double-peak distribution in momen-
tum space, signaling the existence of two temperatures (see 
figure 3). Since the uneven double well has to be kept for the 
double-peaked energy distribution, the state realized here is 
not strictly equilibrium and might be more accurately called 
stationary as the system is quasi-isolated. Now a two-species 
BEC has been realized just recently in experiment [49]

(ii) Due to the weak coupling to the enviornment, nuclear 
spins in a quantum dot can be regarded as quantum bath for 
a long time [50–52]. With the feedback technique that has 
been demonstrated both theoretically and experimentally 
[53], it should be possible to design a scheme that can put 
these nuclear spins in a superposition state of two different 
energy scales and use the electron spin to probe such a state 
[54].

Note that Fine et al have also abandoned the transitional 
microcanonical ensemble and replaced it with ‘quantum 
microcanonical’ ensemble [55–57]. This is fundamentally dif-
ferent from our approach, where no assumption for an ensem-
ble is needed.
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