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Abstract – We study the superfluidity of a spin-orbit coupled Bose-Einstein condensate (BEC)
by computing its Bogoliubov excitations, which are found to have two branches: one is gapless and
phonon-like at long wavelength; the other is typically gapped. These excitations imply superfluidity
that has two new features: i) due to the absence of the Galilean invariance, one can no longer
define the critical velocity of superfluidity independent of the reference frame; ii) the superfluidity
depends not only on whether the speed of the BEC exceeds a critical value, but also on cross-
helicity that is defined as the direction of the cross-product of the spin and the kinetic momentum
of the BEC.

Copyright c© EPLA, 2012

Superfluidity was first discovered in 1938 and has fasci-
nated physicists ever since. This interesting phenomenon
was explained by Landau [1], whose theory has been
very successful in explaining many important properties
of superfluids. However, Landau’s theory of superfluidity
may be facing challenges brought by the recent experi-
mental realization of artificial gauge fields for ultracold
bosonic atoms [2–5]. When the artificial gauge field is non-
Abelian [6–8], it is effectively spin-orbit coupling (SOC).
SOC has played a crucial role in many exotic phenomena
such as topological insulators [9]. However, in superfluids,
the SOC is generally absent and its effects have remained
largely unexplored. Note that this issue is not limited to
ultracold atoms since the Bose-Einstein condensation with
SOC also exists for excitons in semiconductors [10,11].
There have been some theoretical works, where many

interesting properties of spin-orbit coupled Bose-Einstein
condensates (BECs) are explored [11–23]. For instance, it
was shown in ref. [11] that SOC can lead to unconventional
Bose-Einstein condensation with the breaking of time-
reversal symmetry. Later, a stripe phase that breaks
rotational symmetry was found [12,13]. In this letter we
concentrate on the superfluidity of the spin-orbit coupled
BEC.

(a)E-mail: wubiao@pku.edu.cn

To put our study into perspective, we briefly review
Landau’s theory for a superfluid without SOC. Consider
such a superfluid flowing in a tube. With the Galilean
transformation, Landau found that the excitation of this
flowing superfluid is related to the excitation of a motion-
less superfluid as [1]

εv(p) = ε0(p)+p ·v, (1)

where ε0(p) is the excitation for a stationary superfluid
and p is the momentum of the excitation. For phonon
excitation ε0(p) = c|p|, the excitation εv(p) can be nega-
tive only when |v|> c. Therefore, the speed of sound c is
the critical velocity beyond which the flowing superfluid
loses its superfluidity and suffers viscosity. We switch to
a different reference frame, where the superfluid is at rest
while the tube is moving. It is apparent to many that these
two reference frames are equivalent so that the superfluid
will be dragged along only when the tube speed exceeds
the speed of sound c. However, this equivalence is based on
that the superfluid is invariant under the Galilean trans-
formation. As SOC breaks the Galilean invariance of the
system [24], we find that these two reference frames are no
longer equivalent as shown in fig. 1: the critical speed for
scenario (a) is different from the one for scenario (b). For
easy reference, the critical speed for (a) is hereafter called
the critical flowing speed and the one for (b) the critical
dragging speed.

50003-p1
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Fig. 1: (a) A superfluid with spin orbit-coupling moves while
the tube is at rest. (b) The superfluid is dragged by a tube
moving at speed v. (c) An impurity moves at v in the SOC
superfluid. The reference frame is the lab. The two-way arrow
indicates the equivalence between different scenarios and the
arrow with a bar indicates the non-equivalence.

Our study of the superfluidity for a BEC with SOC is
based on the computation of the elementary excitations
using the Bogoliubov equation. We calculate how the
elementary excitations change with the flow speed and
manage to derive from these excitations the critical speeds
for the two different scenarios shown in fig. 1(a), (b). We
find that there are two branches of elementary excitations
for a BEC with SOC: the lower branch is phonon-like
at long wavelengths and the upper branch is generally
gapped. Careful analysis of these excitations indicates
that the critical flowing velocity for a BEC with SOC
(fig. 1(a)) is non-zero while the critical dragging speed is
zero (fig. 1(b)). This shows that critical velocity depends
on the reference frame for a BEC with SOC and, probably,
for any superfluid that has no Galilean invariance.
In addition, we find that the properties of a flow of

BEC with SOC are also related to its spin direction. We
characterize this spin direction with cross-helicity, which
is defined as the cross-product of the spin and the kinetic
momentum of the flow. A BEC flow with Rashba SOC is
always unstable if its cross-helicity is negative.
Model : We consider a BEC with pseudospin 1/2 and

the Rashba SOC. The system can be described by the
Hamiltonian [12,15,25,26]

H =
∫

dr

{

∑

σ=1,2

Ψ∗σ

(

−�
2∇2
2m

+V (r)

)

Ψσ

+γ [Ψ∗1(ip̂x+ p̂y)Ψ2+Ψ
∗

2(−ip̂x+ p̂y)Ψ1]

+
C1
2

(

|Ψ1|4+ |Ψ2|4
)

+C2|Ψ1|2|Ψ2|2
}

, (2)

where γ is the SOC constant, C1 and C2 are interaction
strengths between the same and different pseudospin
states, respectively.

We focus on the homogeneous case V (r) = 0 despite that
the BEC usually resides in a harmonic trap in experiments.
The primary reason is that the superfluidity can be
discussed more clearly in the homogeneous case, and be
compared directly with the conventional superfluidity of
a spinless bosonic system. In addition, the results in
the homogeneous case can be adopted to understand
the superfluidity in more complicated situations with the
local density approximation. We also limit ourselves to
the case C1 >C2, where the system is stable against
phase separation [12,15]. In the following discussion, for
simplicity, we set �=m= 1 and ignore the non-essential
z-direction, treating the system as two-dimensional. This
does not impair the validity of our model. In the following
we assume the BEC moves in the y-direction, and the
critical velocity is found to be not influenced by the
excitation in the z-direction.
The Gross-Pitaevskii equation obtained from the Hamil-

tonian (2) has plane-wave solutions

φk =

(

Ψ1
Ψ2

)

=
1√
2

(

eiθk

−1

)

eik·r−iµ(k)t , (3)

where tan θk = kx/ky, µ(k) = |k|2/2− γ|k|+(C1+C2)/2.
The solution φk is the ground state of the system when
|k|= γ. There are another set of plane-wave solutions,
which have higher energies and are not relevant to our
discussion.
The plane-wave solution φk represents a BEC flow

with the velocity v= k− γk̂( k̂= k/|k|). This velocity
is essentially the kinetic momentum of the BEC, which
is different from the conjugate momentum k due to the
presence of SOC. For example, the ground state has a non-
zero conjugate momentum k, but its kinetic momentum
(or velocity) is zero. Besides its velocity, the BEC flow
described by φk has another feature, the direction of the
spin, which has to be included for a complete description
of the flow. For example, the flow at k= 3γ/2ŷ has the
same velocity γ/2ŷ as the flow at k=−γ/2ŷ. However,
they have different spin directions. With the Rashba-
type SOC, the spin direction of the eigenstate is always
perpendicular to the velocity and has only two choices.
As a result, it is sufficient and also very convenient to
use w= sign[(v̂× σ̂) · ẑ] to denote the spin direction. This
variable w, which is either 1 or −1, is the cross-helicity
mentioned in the introduction. Note that the usual helicity
in literature is defined as the inner product of the spin and
the momentum.
Critical velocities: We study first the scenario depicted

in fig. 1(a), where the BEC flows with a given velocity.
Since the system is not invariant under the Galilean trans-
formation, we cannot use eq. (1) to find the excitations for
the flowing BEC from the excitation of a stationary BEC.
We have to compute the excitations directly. This can be
done by computing the elementary excitations of the state
φk with the Bogoliubov equation for different values of k.
Without loss of generality, we choose k= kŷ with

k > 0. Following the standard procedure of linearizing the

50003-p2
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Fig. 2: (Color online) Elementary excitations of a BEC flow with the SOC. (a) k= 1; (b) k= 2.5; (c) k= 4. C1 = 10, C2 = 4,
γ = 1.

Gross-Pitaevskii: equation [27,28], we have the following
Bogoliubov equation:

L

⎛

⎜

⎜

⎝

u1
u2
v1
v2

⎞

⎟

⎟

⎠

= ε

⎛

⎜

⎜

⎝

u1
u2
v1
v2

⎞

⎟

⎟

⎠

, (4)

where

L=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

H+k b12 − 12C1 − 12C2
b21 H

+
k − 12C2 − 12C1

1
2C1

1
2C2 H

−

k b34

1
2C2

1
2C1 b43 H−k

⎞

⎟

⎟

⎟

⎟

⎟

⎠

(5)

with H±k =±
q2
x
+(qy±k)

2

2 ±A, A= C12 − k
2

2 + γk, b12 =

−γ(iqx+ qy + k)+ C22 , b21 = γ(iqx− qy − k)+
C2
2 , b34 =

γ(iqx− qy + k)− C22 , and b43 =−γ(iqx+ qy − k)− C22 .
As usual, there are two groups of eigenvalues and
only the ones whose corresponding eigenvectors satisfy
|ui|2− |vi|2 = 1 (i= 1, 2) are physical.
For comparison, we consider the case without SOC. This

is to put γ = 0 and reduce our system to a two-component
BEC system, which is well studied in the literature [29].
For this case, L can be diagonalized analytically and there
are two branches of excitations,

ε±(q) = qyk+

√

C1±C2
2

q2+
q4

4
. (6)

These results show that the system at the ground state
(k= 0) has two different speeds of sound,

√

(C1+C2)/2

and
√

(C1−C2)/2. Since the excitation ε− becomes nega-
tive only when k >

√

(C1−C2)/2, the critical flowing
velocity in this case is

√

(C1−C2)/2. When C2 = 0, these
two branches of excitations merge into one and the critical
velocity is

√

C1/2, which is well known and was confirmed
in a BEC experiment [30].
In general, there are no simple analytical results. We

have numerically diagonalized L to obtain the elementary
excitations. We find that part of the excitations are

Fig. 3: Excitations along the x-axis (the first row) and y-axis
(the second row) at different values of k. (a1), (a2): k= 1; (b1),
(b2): k= 3; (c1), (c2): k= 4. C1 = 10, C2 = 4, γ = 1.

imaginary for BEC flows with |k|< γ. This means that
all the flows with |k|< γ are dynamically unstable and
therefore do not have superfluidity. For other flows with
k� γ, the excitations are always real and they are plotted
in fig. 2. One immediately notices that the excitations have
two branches, which are in contact with each other at a
single point. A closer examination shows that the upper
branch is gapped in most of the cases while the lower
branch has phonon-like spectrum at large wavelength.
These features are more apparent in fig. 3, where only
the excitations along the x-axis and y-axis are plotted.
In fig. 2(c) and fig. 3(c2), we notice that some of the exci-

tations in the upper branch are negative, indicating that
the underlying BEC flow is thermodynamically unstable
and has no superfluidity. In fact, our numerical computa-
tion shows that there exists a critical value kc: when k > kc
either part of the upper branch of excitations or part of
the lower branch or both become negative. This means
that the flows described by the plane-wave solution φk,−
with |k|>kc suffer Landau instability and have no super-
fluidity. Combined with the fact that the flows with |k|<
γ are dynamically unstable, we can conclude that only
the flows with γ � |k|� kc have superfluidity. Physically,
these super-flows have speeds smaller than vc = kc− γ and

50003-p3
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Fig. 4: Critical flowing velocity vc (solid line) of a BEC as a
function of the SOC parameter γ. (a) C1 > 3C2; (b) C1 < 3C2.

cross-helicity w= 1. We have plotted how the critical flow-
ing velocities vary with the SOC parameter γ in fig. 4.
We find two different asymptotic behaviors for the

critical velocity when γ gets large. As shown in fig. 4,
the critical flowing velocity becomes a constant, vc =
√

(C1+C2)/2, beyond a threshold value in the parameter
regime C1 > 3C2 while it approaches an asymptotic value√
C1−C2 in the regime C1 < 3C2.
We turn to another reference frame illustrated in

fig. 1(b), where the BEC can be viewed as being dragged
by a moving tube. To simplify the discussion, we replace
the moving tube with a macroscopic impurity moving
inside the BEC as shown in fig. 1(c). Correspondingly,
the question as to whether the BEC will be dragged along
by the moving tube is replaced by an equivalent question:
will the impurity experience any viscosity? Suppose that
the moving impurity generates an excitation in the BEC.
According to the conservations of both momentum and
energy, we should have

m0vi =m0vf +q, (7)

m0v
2
i

2
=
m0v

2
f

2
+ ε0(q), (8)

where m0 is the mass of the impurity, vi and vf are the
initial and final velocities of the impurity, respectively,
and ε0(q) is the excitation of the BEC at k= γ. If the
excitations were purely phonons, i.e., ε0(q) = c|q|, these
two conservations would not be satisfied simultaneously
when v≈ |vi| ≈ |vf |< c. This means that the impurity
could not generate phonons in the superfluid and would
not experience any viscosity when its speed is smaller than
the sound speed. This is in fact nothing but the Cerenkov
radiation [31,32], where a charged particle radiates only
when its speed exceeds the speed of light in the medium.
For our BEC system, the elementary excitations ε0(q)
are not purely phonons. In this case, the critical dragging
velocity derived from eqs. (7), (8) is given by

vc =

∣

∣

∣

∣

ε0(q)

|q|

∣

∣

∣

∣

min

. (9)

For the special case γ = 0, we have

ε±0 (q) =

√

C1±C2
2

q2+
q4

4
. (10)

From eq. (9), we obtain the critical dragging speed
√

C1−C2
2 , which is the same as the critical flowing speed.

When γ �= 0, the excitations ε0(q) also share two
branches. Along the x-axis, these two branches are

ε±0 (qx) =

√

s1+ s2q2x+
q4x
4
±
√

t1+ t2q2x+ t3q
4
x+ γ

2q6x,

(11)

where s1 = 2γ
4+ γ2 (C1−C2), s2 = 2γ2+ 12C1, t1 = s21,

t2 = 2s1s2 , and t3 = 2s1+
(

γ2+C2/2
)2
. Along the y-axis,

the excitations of the ground state are

ε−0 (qy) =

√

C1+C2
2

q2y +
q4y
4
, (12)

ε+0 (qy) = 2γqy +

√

2s1+

(

s2−
C2
2

)

q2y +
q4y
4
. (13)

When γ > 0, the upper branch ε+0 (qx) is always parabolic
at small qx with a gap

√
2s1. When expanded to the second

order of qx, the lower branch has the following form:

ε−0 (qx)≈ q2x

√

C1+C2
8γ2

. (14)

This shows that ε−0 (qx) is parabolic at long wavelengths
instead of linear as usually expected for a boson system.
This agrees with the results in ref. [17]. This parabolic
excitation has a far-reaching consequence: according to
eq. (9), the critical dragging velocity vc is zero, very
different from the critical flowing velocity for a BEC
moving in a tube. This shows that the critical velocity for a
BEC with SOC is not independent of the reference frame,
in stark contrast with a homogeneous superfluid without
SOC. This surprising finding of course has the root in the
fact that the BEC described by the SOC Hamiltonian (2)
is not invariant under the Galilean transformation [24].
Rashba and Dresselhaus SOC : We have also investigated

the superfluidity with the general form of SOC, which is a
mixture of Rashba and Dresselhaus coupling. Mathemat-
ically, this SOC term has the form ασxpy −βσypx. The
essential physics is the same: the critical flowing speed is
different from the critical dragging speed, and therefore
the critical velocity depends on the choice of the refer-
ence frame. However, the details do differ when α �= β.
First, the critical dragging speed is no longer zero. With-
out loss of generality, we let α> β. The slope of the exci-
tation spectrum for the ground state along the y-axis

is vy =
√

√

2α2 (C1−C2+2α2)+ 2α2+ C1−C22 − 2α, and

the slope along the x-axis, vx =

√

(

1− β2
α2

)

C1+C2
2 . The

50003-p4
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critical dragging velocity is the smaller of the above two
slopes, which are both non-zero. Secondly, the BEC with
negative cross-helicity can also be stable; as a result, there
is a different critical flowing speed for either cross-helicity.
For the Rashba type (α= β), the critical flowing speed
for negative cross-helicity is always zero since the BEC is
always dynamically unstable for negative cross-helicity.
Experimental observation: Spin-orbit coupled BECs

have been realized recently by three different groups [3–5]
through coupling ultracold 87Rb atoms with laser fields.
The strength of the SOC in the experiments can be tuned
by changing the directions of the lasers [3–5] or through
the fast modulation of the laser intensities [33]. The
interaction between atoms can be adjusted by varying the
confinement potential, the atom number or through the
Feshbach resonance [34]. For the scenario in fig. 1(b), one
can use a blue-detuned laser to mimic the impurity for
the measurement of the critical dragging speed similar to
the experiment reported in ref. [30]. For the scenario in
fig. 1(a), there are two possible experimental setups for
measuring the critical flowing speed. In the first one, one
generates a dipole oscillation similar to the experiment
in ref. [5] but with a blue-detuned laser in the middle of
the trap. The second one is more complicated: At first,
one generates a moving BEC with a gravitomagnetic
trap [35], then uses Bragg spectroscopy [36,37] to measure
the excitations of the moving BEC, from which the super-
fluidity can be inferred. For the typical atomic density of
1014–1015 cm−3 achievable in current experiments [30],
and the experimental setup in ref. [3], the critical flowing
velocity is 0.2–0.6 mm/s, while the critical dragging
velocity is still very small, about 10−3–10−2mm/s. To
further magnify the difference between the two critical
velocities, one can use the Feshbach resonance to tune
the s-wave scattering length.
Perspective: This is not the first BEC system, where

there are two different critical velocities of superfluidity.
The BEC in an optical lattice [38], a superfluid with its
density periodically modulated, is another system of two
different critical velocities. Supersolid helium may also be
regarded as a periodic superfluid [39].
We consider first the case when the BEC is locked

with the lattice and they move together as shown in
fig. 5(a), (b), (d). Since this system is invariant under
the Galilean transformation, the two scenarios depicted
in fig. 5(a), (b) are equivalent and Landau’s argument
is still applicable. The caveat is that the critical velocity
is always zero no matter how the elementary excitation
of the superfluid looks. The key reason is that the
momentum p of the excitation is not well defined due
to the presence of the lattice: two momenta which differ
by a reciprocal lattice vector are equivalent. This result
has been verified in extensive computations for Cerenkov
radiation in a periodic medium [31]. Recently, a similar
numerical calculation was done specifically for a moving
defect in a BEC in an optical lattice and zero critical
velocity is found [40].

Fig. 5: In (a), (b), (d), the periodic superfluid and the lattice
are locked in and move together with respect to the obstacle. In
(c), the lattice is gradually accelerated to speed v. The reference
frame is the lab. The scenario in (c) is not equivalent to the
scenarios in (a), (b), (d) as there is relative motion between
the lattice and the fluid in (c).

The presence of a lattice does put a new twist into
the system. One can gradually accelerate the lattice to
a certain velocity and see how the superfluid changes
(fig. 5(c)). There exists a critical velocity for the lattice
beyond which the system loses its superfluidity. This
critical velocity for lattice is different from the critical
velocity of a moving defect and is called trawler critical
velocity in ref. [41]. This type of critical velocity was
considered theoretically in ref. [27] and demonstrated
experimentally in ref. [42].
Note that a more detailed version of the above discus-

sion for the superfluidity of a periodic superfluid can be
found in ref. [41]. However, an error was made in ref. [41]:
a non-zero critical velocity for the scenarios shown in
fig. 5(a), (b), (d) was predicted.
With BEC, we now have many types of superfluids,

which are different from the conventional spinless and
homogeneous superfluid helium. We expect more of
this kind of new superfluids to appear in the future,
which will surely extend and enrich our understanding of
superfluidity.
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