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Abstract: We study the tunneling dynamics and energy bands of three
Bose-Einstein condensates which are coupled weakly with each other.
The study is carried out with both the mean-filed model and the second-
quantized model. The results from these two models are compared and
found to agree with each other when the particle number is large. Without
interaction, this system possesses a Dirac point in its energy band. This
Dirac point is immediately destroyed and develops into a loop structure
with arbitrary small interaction. This loop structure has a strong effect on
the tunneling dynamics. We find that the tunneling dynamics in this system
is very sensitive to the system parameter, e.g., the interaction strength. This
sensitivity is found to be caused by the chaos in the mean-field model and
the avoided energy crossings with tiny gaps in the second-quantized model.
This result gives a certain indication on how the classical dynamics and
quantum dynamics are connected in the semi-classical limit. Our mean-field
results are also valid for three mutually coupled optical nonlinear waveg-
uides.
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1. Introduction

A Bose-Einstein condensate (BEC) is an ideal platform, where many interesting nonlinear dy-
namics and macroscopic tunneling phenomena can be studied in well-controlled simple set-
tings [1–9]. Although these phenomena can also be studied in other systems, for example,
superconductors and nonlinear waveguides, BECs offer certain unique advantages. For macro-
scopic tunneling, nonlinear effects can be explored in a BEC double-well system while it is
impossible in a superconducting Josephson junction [10]. In a BEC system, the particle num-
ber can be well controlled, which allows people to study the semiclassical relation between
quantum dynamics and nonlinear dynamics. In the nonlinear waveguide system, this is impos-
sible as the photon number has to be large enough to ensure nonlinearity of the system.

A BEC in a double-well potential is probably the most studied system along this direc-
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tion [8–25]. Many interesting phenomena are found both theoretically and experimentally,
e.g., Landau-Zener dynamics [11–15], macroscopic self-trapping [10, 16], the quantum and
thermal fluctuations of the phase [17], atome interferometry [18], and double wells on atoms
chips [19, 20] . This double-well BEC system was also studied by using both the mean-field
model (the Gross-Pitaevskii equation) and the second-quantized model. The semiclassical rela-
tion between these models was explored and discussed [21]. Similar results have been found in
a periodically-driving double-well BEC system in 2007 [22].

Fig. 1. Illustration of a potential with three mutually coupled wells.

Recently people have begun to study a BEC in a triple-well potential (or three weakly coupled
BECs) with the expectation of discovery of more interesting phenomena [26–28]. There are two
types of triple-well potentials, chain-shaped and ring-shaped. For the former, the three wells are
aligned along a straight line with no coupling between the first and the third wells. For the lat-
ter, the three wells are on a ring and there is coupling between every pair of these wells (see
Fig. 1). The chain-shaped triple-well is the focus of the most of these previous studies [26–41].
They found quantum signatures of the trimer model [40, 41], chaos behavior [42–44], off-site
interaction [45], and discrete breather-phonon collisions [46]. In comparison, much less study
has been done for the ring-shaped triple well [47–49]. Still people have found many interesting
phenomena, the chaos behavior [50,51], self-trapping [52], and the energy redistribution of in-
teracting bosons in a ring-shaped quantum trimer [53]. The unstable regimes with repulsive [50]
and attractive [54] both has also been investigated.

In this paper we focus on a BEC in a ring-shaped triple-well potential. Different from the
ring-shaped model in [50] where the three wells are equal in depth, the depth of each well in
our model can be tuned. As the well depths are changed, the three eigen-energies will form
a band. When there is no interaction between the atoms, the two of the three eigen-energies
become degenerate at the equal well-depth and form a Dirac point. This is due to that this
ring-shaped model has the same symmetry as the graphene has around its K point [55, 56]. In
comparison, for a BEC in a chain-shaped triple-well potential , it has no such a symmetry and
there is no Dirac point [39]. As a result, we expect more interesting phenomena. In particular,
we will use the second-quantized model to analyze the tunneling dynamics for this triple well
system.

With the mean-field model, we find that the Dirac point is easily destroyed and developed
into a loop structure with arbitrary small interaction. This is different from the double-well BEC
system and the chain-shaped triple-well system, where the loop is formed only the interaction is
big enough. The tunneling dynamics with a linearly sweeping field is also studied. We find that
the tunneling dynamics is strongly influenced by the loop structure and the tunneling probability
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is very sensitive to the system parameter, changing abruptly when the interaction strength is
only slightly modified. This large erratic oscillation of tunneling probabilities with interaction
strength can be attributed to the chaotic nature of the system.

For comparison, this triple-well BEC system is also studied with the second-quantized
model. The second quantized energy levels are computed and compared to the mean-field lev-
els. In the double-well BEC system, the mean-field energy levels encompasses a region where
the second-quantized energy levels has avoided-crossings. Such a clear and simple correspon-
dence is not found in this triple-well BEC system. In the second quantized model, the tunneling
probabilities with a sweeping field are also found to change erratically with large amplitude
as the interaction strength increasing. In the second quantized model, this erratic tunneling
behavior can be attributed to that the positions of the avoided crossings in the energy spec-
trum depends sensitively on the system parameter. This result gives us some indication how
the chaotic behavior in the mean-field model is related to the corresponding second-quantized
energy levels.

This paper is organized as follows. In Sec. II, we present the mean-field model for our triple-
well BEC system. Then we study the chaotic dynamics in this model and its influence on the
tunneling results. In Sec. III, we use the fully quantized method to investigate the same system
and make a comparison with the mean-field results. Sec. IV is a summary.

2. Mean field model

We consider a BEC residing in a triple-well potential, where the three wells are coupled with
each other (see Fig. 1). We take the three-mode approximation and use a1,a2,a3 to denote the
probability amplitudes of a BEC residing in the three potential wells, respectively. This three-
mode approximation is equivalently a single-band approximation: this approximation is good
as long as the inter-well tunneling and the on-site interaction is much smaller than the energy
gap. In this triple well system, the energy gap is roughly the gap between the ground state and
the first-excited state in a single well.

We have made some assumptions to treat this model system in a three mode approximation
[50]: The potential here is a symmetric ring-shaped triple well potential and the lowest energy
level of each well is well separated from the higher energy levels. The interaction between
particles is not strong enough to change this property of the system configuration. With the
mean field approach, we then have the following dimensionless Schrödinger equation [47, 50,
56],

i
∂
∂ t

⎛
⎝

a1

a2

a3

⎞
⎠= H(γ)

⎛
⎝

a1

a2

a3

⎞
⎠ . (1)

with

H(γ) =

⎛
⎝

−c |a1|2 + γ v/2 v/2
v/2 −c |a2|2 v/2
v/2 v/2 −c |a3|2 − γ

⎞
⎠ . (2)

where c > 0 is the nonlinear interaction strength between bosons. The minus sign before c
indicates that the interaction in the system is attractive. The coupling term v is chosen to be
positive. 2γ denotes the energy offset between the first and third wells. The total probability
|a1|2+ |a2|2+ |a3|2 is conserved to be 1. v is the coupling parameter. The corresponding energy
of the system is E = γ(|a1|2−|a3|2)+ v

2 (a
∗
1a2+a∗1a3+a∗2a1+a∗2a3+a∗3a1+a∗3a2)−c/2(|a1|4+

|a2|4 + |a3|4). The relation between the chemical potential and E is E = μ − c
2 (|a1|4 + |a2|4 +

|a3|4) where μ is the chemical potential defined as 〈ψ|H|ψ〉. One can use the well-known
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procedure to find how these dimensionless parameters are related to the physical parameters in
experiments [12, 21]. Note that the total number of the particles N is conserved in this system.

When c= 0, the system becomes a linear three-level system. Its energy spectrum with respect
to the energy offset γ can be computed easily by diagonalizing the matrix in Eq. (2) . As shown
in Figs. 2(a), there exists a Dirac point at γ = 0 in the energy band, similar to the Dirac point
found in the Bloch bands of graphene. We find that this Dirac point is immediately destroyed
once c becomes non-zero. As shown in Figs. 2(b), the Dirac point is replaced immediately by a
sophisticated loop structure with a very small c. With the nonlinear parameter c increasing, the
loop will maitain its topological structure but cover a larger region. That means the number of
the fixed points will remain the same with the increase of the nonlinearity at γ = 0. This is in
stark contrast with the chain-shaped model [39], where the loop appears only beyond a critical
value of c. The mean field levels in Figs. 2 are computed by searching the solution of Eq. (1) of
the form a j(γ, t) = a j(γ)e−iμt( j = 1,2,3).

The emergence of a loop structure in Figs. 2 with an infinitesimal small value of c can be
shown analytically as we can find analytical solutions for the mean-field levels at γ = 0. These
solutions can be grouped into four, which are marked by A,B,C,D in Figs. 2(d). The solutions

Fig. 2. Mean-field energy levels at v= 0.1 for different c. (a) c= 0; (b) c= 0.06; (c) c= 0.1;
(d) c = 0.2.
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at points A and B are

(a1,a2,a3)A = (
1√
3
,

1√
3
,

1√
3
), (3a)

μA = v− c
3

; (3b)

(a1,a2,a3)B = (
1√
3
,− 1

2
√

3
± 1

2
i,− 1

2
√

3
∓ 1

2
i), (3c)

μB =− c
3
− v

2
. (3d)

These solutions originate clearly from the linear solutions at c = 0. The solutions at point C are

(a1,a2,a3)C = (0,b+ f i,−b− f i), (4a)

μC =−c+ v
2

. (4b)

Here b, f can be any real number satisfying the condition b2 + f 2 = 1/2. This means that there
are infinite solutions at point C. The solutions of the lowest energy at point D are

(a1,a2,a3)D = (a,a,
√

1−2a2), (5a)

μD =−ca2 + v(a+
√

1−2a2)/(2a) , (5b)

where a is the roots of the equation (av/2− 3ca3 + ca)
√

1−2a2 + v/2− 2va2 = 0 which sat-
isfies the conditions that a is real and a �= 1/

√
3. One can prove without much difficulty that

(av/2−3ca3 + ca)
√

1−2a2 + v/2−2va2 = 0 always has a real root a �= 1/
√

3.
These solutions at C,D do not exist at c = 0 and emerge immediately when c is not zero.

This proves analytically that the loop seen Figs. 2 appears at a infinitesimal value of c.
We are interested in the tunneling dynamics of this system when the level bias γ changes

with time as γ = αt. Here we focus on the adiabatic limit, that is, the sweeping rate α tends
to zero. Due to the existence of Dirac point, it is impossible to establish the adiabatic criterion.
In our numerical simulation, we choose α = 0.0001. This sweeping rate is adiabatic for the
corresponding two-model and the chain model. We always start with a state on the lowest
branch of the levels and evolve the state according to Eq. (1) with γ changing from a large
negative value to a large positive value at rate α . At the end, we compute how each well is
populated P = (P1,P2,P3), where Pi = |ai|2. These populations Pi’s are the end results of the
tunneling under a sweeping field γ . When c = 0, during the adiabatic evolution the particles
pass through the Dirac point, then move up to the second level. So, the final state will be
P1 � P3 � 0,P2 � 1. When c increases, the Dirac point is destroyed and develops into a loop
structure as shown in Figs. 2(b)-2(d). The loop will block the particles moving onto the second
level, rendering a result significantly different from that for the case c = 0. This analysis is
confirmed by our numerical results shown in Fig. 3, where the curves change rapidly with
arbitrary small interaction.

One surprising feature in Fig. 3 is the large oscillations of P, which indicates that the tun-
neling dynamics in this system is very sensitive to the interaction c. This is not seen in the
double-well system. In the following, we investigate the chaotic behavior of the system and
find that it is the cause of the drastic oscillations. Here we use the method of Poincaré section
[57].

It is more convenient to study chaos in the language of classical Hamiltonian. For this pur-
pose, we transform this model mathematically into a classical Hamiltonian system with a well-
known method [57]. We introduce n1 = |a1|2, n2 = |a2|2, n3 = |a3|2, θ1 = arga2 − arga1, and
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Fig. 3. Mean particle numbers of three wells as a function of c at v = 0.1. The sweeping
rate is α = 0.0001. Pi denotes the mean particle number in the ith well. The insets are the
enlargement of the sections indicated in dashed boxes.

θ3 = arga2 − arga3. With the constraint n1 +n2 +n3 = 1 and ignoring a total phase, we obtain
a classical Josephson Hamiltonian,

H = −c/2[n2
1 +n2

3 +n2
2]− γ(n1 −n3)

+v
√

n1n2 cosθ1 + v
√

n2n3 cosθ3

+v
√

n1n3 cos(θ3 −θ1). (6)

The corresponding canonical equations of motion can be found in appendix A.
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Fig. 4. The Poincaré sections at θ3 = 0 for γ = 0.008,c = 0.2,v = 0.1 with different en-
ergies E. (a) E = −0.1215, (b) E = −0.1144, (c) E = −0.1103, (d) E = −0.1019, (e)
E =−0.0975, (f) E =−0.0939, (g) E =−0.0780, (h) E = 0.0628. The green stars are for
energy level D in Fig. 2, the red triangles (left) are for C, the black triangles (right) for B,
and the black diamonds for A.

The Poincaré section(PS) [39, 50, 57] is used to investigate the chaotic dynamics of this
system. We only concentrate on the dynamics of the atoms whose energy is almost near the
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eigenenergy of each fixed point and at the point of γ = 0.008 not far away from γ = 0. After
taking a small perturbation on the eigenenergy of each level and setting c = 0.2,v = 0.1, we
solve Eq. (5) numerically and select the PS by setting θ3 = 0, dθ3/dt > 0. The energy of each
PS is fixed. The PSs from the lowest to the highest levels are shown in Fig. 4. Figs. 4(a),4(b),4(c)
and 4(h) show that the motions around the levels that are connected to points A and D are rather
regular while the motions for other levels as shown in Figs.4 (d)-4(g) are quite chaotic.

The numerical results in Fig. 4 clearly indicate that there exists chaotic behavior in our three-
mode system. We find that the chaotic behavior persists as long as γ is not large. As γ sweeps,
the system will have to go through this chaotic region and, therefore, the tunneling dynamics
will be greatly influenced. This chaotic dynamical behavior is the cause for the large oscillations
seen in Fig. 3. To illustrate this point more clearly, we have done another two sets of numerical
calculations.

In the first set of calculations, we show that the tunneling dynamics is very sensitive to the
choice of the initial state. The system parameters for this set of calculations are c = 0.14,v =
0.1. We choose one initial state as the eigenstate ψ0 = [a1,a2,a3] at γ = −3 and the other
initial state by taking a small perturbation of ψ0, that is ψ ′

0 = ψ0 + δψ . δψ is so small that the
initial probability changes only around 10−4. The state |ψ(t)|2 at each step of the adiabatic
evolution is recorded with γ = αt (α = 0.0001) and plotted in Fig. 5. In Figs. 5(a), we see
that the initial state with the probabilities P10 = 0.0001,P20 = 0.0002,P30 = 0.9997 evolves to a
state with P1 = 0.3868,P2 = 0.6050,P3 = 0.0082. In Figs. 5(b), a slightly different initial state
with P10 = 0.0001,P20 = 0.0004,P30 = 0.9995 will evolve to a state with P1 = 0.6093,P2 =
0.2149,P3 = 0.1758, which is very different from the former result. These results show that,
although the external condition is the same, a small perturbation to the initial state will make
the results totally different. This means the tunneling dynamics of this system is very sensitive
to the initial condition, which is a characteristics of chaotic behavior.

Fig. 5. The dynamic evolution of the particle numbers Pi = |ψ(t)i|2 in each well. Blue solid
line indicates P1, green dashed line is P2, red dash dotted line corresponds to P3, we use
c = 0.14,v= 0.1. (a) The initial state is the lowest eigenstate at γ =−3; (b) The initial state
is a small perturbation to the initial state in (a). The final mean particle numbers in the three
wells are very different, indicating that a small change in the initial condition can cause a
big change in the final state.

In the second set of calculations, we show that the tunneling dynamics is also sensitive to
the system parameters. We focus on the interaction strength c. In Fig. 6, we use the eigenstates
ψ0 = [a1,a2,a3] at γ =−3 as the initial state for (a) c = 0.12,v = 0.1 and (b) c = 0.14,v = 0.1.
We record |ψ(t)|2 at each step of adiabatic evolution with γ = αt(α = 0.0001). In Figs. 6
(a) (c = 0.12,v = 0.1), the initial probabilities are P10 = 0.0001,P20 = 0.0002,P30 = 0.9997.
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After the adiabatic evolution, they become P1 = 0.4553,P2 = 0.4948,P3 = 0.0499. In Figs.
6(b) (c = 0.14,v = 0.1), the initial probabilities are P10 = 0.0001,P20 = 0.0002,P30 = 0.9997,
and they become P1 = 0.3868,P2 = 0.6050,P3 = 0.0082, very different from the former result.
The comparison indicates that the tunneling probability changes abruptly when the interaction
strength is modified only slightly .

The sensitivity to the initial conditions and system parameters that we have shown can only
be explained with the chaotic behavior of the system near γ = 0 seen in Fig. 4. When the system
evolves to the region near γ = 0, the small difference will be magnified by the chaotic behavior
and lead to very different end results as indicated by the large oscillations in Fig. 3.

Fig. 6. Mean particle numbers of three wells during the adiabatic evolution of γ . The adi-
abatic rate is α = 0.0001. The initial condition is the lowest eigenstate at γ = −3. (a)
v = 0.1,c = 0.12; (b) v = 0.1,c = 0.14. The final probabilities in the three wells are very
different, indicating that a small change in the system parameters can also cause a large
change in the final state.
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Fig. 7. Mean particle numbers as a function of c in a chain-shaped three-well system [39].
v = 0.1,α = 0.0001. The critical point is labeled by red point F, the critical value of c is
around c = 0.076. The insets are the enlargement of the sections indicated in dashed boxes.

It is important to compare our ring-shaped system to a chain-shaped system, where there
is no coupling between the first well and the third well [39, 42–44]. For the chain model, the
Hamiltonian has the following form,

H =

⎛
⎝

−c |a1|2 + γ v/2 0
v/2 −c |a2|2 v/2
0 v/2 −c |a3|2 − γ

⎞
⎠ . (7)
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There is no Dirac point at c = 0 for this system and the loop structure emerges only beyond a
critical value of c [39]. Our computation shows that this feature will lead to a different tunneling
dynamics. As shown in Fig. 7, especially the zoomed parts in the figure, the populations at the
three wells at the end of tunneling are not sensitive to the interaction strength c and remain
almost flat before a critical value of c (the red point F in Fig. 7). This is obviously different
from the ring model, where the tunneling is strongly affected by small interaction (see Fig.
3). On the other hand, we also notice a common feature between Fig. 3 and Fig. 7: there are
large oscillations in the tunneling when c is large. They are caused by chaos near γ = 0 in both
models. In [39], the chaos in the chain model was found to have a great effect on the tunneling
dynamics.

So far we have assumed that c,v are fixed while γ is changing. In fact, for a BEC in a
triple-well potential, c and v will also change when γ changes. Nevertheless, these change will
not significantly alter our main results. In the experiment [11] where the tunneling dynamics
in a double-well BEC system is studied, their results agree well with the two-mode model
where c,v are fixed while γ is changing [12]. There are various ways to realize our model in
experiments. In fact, this type of ring-shaped optical lattices with an arbitrary number of sites
has been achieved in 2009 [60]. Our model can also be realized with an internal Josephson
junction employing three spin-states of Bose-Einstein condensate [61]. Furthermore, our model
can realized with a BEC system in a honeycomb lattice [56] and the nonlinear wave guide
system [22,59]. In the last two systems, γ can indeed be varied with c,v fixed.

3. Second quantized model

This triple-well BEC system can be also described by a second-quantized Hamiltonian, which
is

Ĥ =− γ(â†
1â1 − â†

3â3)+ v/2(â†
1â2 + â†

2â1 + â†
2â3

+ â†
3a2 +a†

3a1 +a†
1a3)− c/(2N)(â†

1â†
1â1â1

+ â†
2â†

2â2â2 + â†
3â†

3â3â3). (8)

where â†
i , âi(i = 1,2,3) are the generators and annihilators for the quantum states at the three

wells. The mean-field model (2) is an approximation in the large N limit. In the following,
we shall study the energy levels and tunneling dynamics in this second quantized model and
compare them to the mean-field results.

The energy levels of the second-quantized mode (8) can be found by directly diagonalizing
the Hamiltonian Ĥ and are plotted in Fig. 9 as the blue lines. Many avoided-crossings with tiny
gaps appear in the lower part of the quantized energy levels with the increase of the mean-field
interaction c. These avoided-crossings were also found in [50, 51].

The mean-field energy levels (red circles) are also plotted in Fig. 9 for comparison. We see
that the quantized energy levels are bounded by the mean-field levels from the bottom and the
top. We also notice that the mean-field loop structure overlaps very much with the region in the
quantized energy levels, where the avoided-crossings with tiny gaps concentrate.

This kind of comparison between the mean-field energy levels and the quantized ones has
been done for a double-well BEC system [58]. The Sommerfeld quantization method is used
in [21] to analyse the mean field and the quantized theory. However, in our case the Sommer-
feld quantization procedure can not be applied because the three-mode system studied here is
chaotic and not integrable [42–44]. Einstein was believed to be the first one to notice this.

For convenient comparison, we have plotted the double-well results in Figs. 10(a), where one
sees that the avoided-crossings in the quantized levels are enveloped by the mean-field energy
levels. This prominent feature is not seen in our three-mode BEC system (see Figs. 10(b,c)).
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Fig. 8. Energy levels from the second-quantized model for different c: (a) c = 0, (b) c =
0.06, (c) c = 0.1, (d) c = 0.2. The red circles are for the mean-field energy levels; the blue
lines stand for the quantized levels. N = 8, v = 0.1

As clearly seen in Figs. 10(c), for our three-mode system, there are many avoided-crossings
outside the loop. This difference may be caused by the chaos in the three-mode system.

We now use this second quantized model to study the tunneling dynamics. Similarly, we set
the initial state φ0 in the lowest level. The system evolves as γ sweeps slowly across γ = 0
with a given rate α (α = 0.0001). The dynamic evolution of φ(t) is recorded. At the end, we

calculate the particle numbers in each well: Pi =
〈

φ(t)|â†
i âi|φ(t)

〉
,(i = 1,2,3). The results are

plotted in Fig. 11, where the mean-field results from Fig. 4 are also plotted for comparison. The
green, red, and black stars are for the quantized results at N = 8,10,15, respectively. Due to the
limit of our computing capability, we can not compute for larger particle numbers.

As seen in Fig. 11, the quantized tunneling results agree well with the mean-field results.
When c is small, there is almost perfect agreement between the two. In the region where c is
big and the mean-field results oscillate greatly, the quantized results change erratically with the
interaction strength but with a much smaller amplitude than the mean-field one.

To have a better understanding of the erratic oscillation in the quantized results, we track
how the probability Ai = |〈φi|φt〉|2 on the ith level changes with time. φi is the eigenstate for the
ith level and φt is the time evolution of φ0. In Fig. 12, the first, second, and third largest Ai are
recorded using black, green, and red stars. It is quite clear that these stars do not stay on the same
levels and keep switching levels at avoided crossings. Only at large γ , these colored stars will
remain on their respective levels without further switching. In Figs. 12(a) for c = 0.12,v = 0.1,
the largest three probabilities at the end are on the 11th, 7th, and 6th levels in the descending
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Fig. 9. Energy levels from the second-quantized model (blue solid lines) and mean-
field model (red open circles) for a double-well model and the ring-shaped triple-well
model. (a) The energy levels for two-mode model for N = 20,c = 0.4,v = 0.2, the quan-
tized hamiltonian of this model is Ĥ = γ(â†

1â1 − â†
2â2)/2+ v(â†

1â2 + â1â†
2)/2− c(â†

1â1 −
â†

2â2)
2/(4N)) [13]. (b) The energy levels for the ring-shaped triple-well energy for N =

10,c = 0.1,v = 0.1. (c) The enlarged rectangle part in (b). In (a), all the avoided-crossing
points are enveloped in the mean-field energy levels. In (b,c), this is not the case; many
avoided-crossing points lie outside of the envelope of the mean-field energy levels.

order. With a slight change of parameters to c = 0.14,v = 0.1, the largest three become the 7th,
8th, and 11th levels as seen in Figs. 12(b), apparently different from the case in Figs. 12(a).
This kind of change of levels and their ordering can lead to large change of tunneling between
wells. In Figs. 12(c,d), we have plotted how the populations on these energy levels evolve with
time. We see many sharp changes, which are caused by the tunneling at avoided-crossings with
tiny energy gaps.

Table 1. The mean particle number Pi in each well at different energy levels. The parameters
are γ = 0.4,N = 8,c = 0.12,v = 0.1

6th 7th 8th 9th 10th 11th 12th

P1 0.6169 0.7414 0.4942 0.6164 0.3718 0.6168 0.4945
P2 0.3755 0.0116 0.4965 0.2549 0.6184 0.1337 0.3739
P3 0.0076 0.2470 0.0093 0.1287 0.0098 0.2495 0.1216

In Table 1 and 2, we have listed the populations Pi(i = 1,2,3) = 〈φn|â†
i âi|φn〉 at each well for
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Fig. 10. Mean particle numbers as a function of c for v = 0.1 in the ring-shaped triple-well
model. v = 0.1,α = 0.0001. The solid lines are for the mean-field model; the green, red
and black stars are the quantized results for N = 8,10,15, respectively.

Table 2. The mean particle number Pi in each well at different energy levels. The parameters
are γ = 0.4,N = 8,c = 0.14,v = 0.1

6th 7th 8th 9th 10th 11th 12th

P1 0.6165 0.7417 0.4935 0.6163 0.3709 0.6169 0.4940
P2 0.3761 0.0113 0.4975 0.2550 0.6197 0.1333 0.3744
P3 0.0073 0.2470 0.0090 0.1288 0.0094 0.2498 0.1316

different eigenstates φn. It is clear from the two tables that the population Pi at each well for a
given eigenstate does not change much with a slight change of system parameters. However, Pi

can change greatly between neighboring eigenstates.
With these detailed information that we have presented, it is not hard to understand the erratic

oscillations seen in Fig. 11. With a small change of system parameters, the positions of the
avoided-crossing will change. Although this shift of the avoided-crossing positions is small, it
will affect which pairs of energy levels undergo the tunneling first, and will eventually affect
which energy levels have the largest occupation probabilities and the number of particles in
each well according to Table I, II. With this picture in mind, we expect that the fluctuations will
increase with the number of particle N. With the increase of particle number N, the number of
the avoid crossings will also increase. As a result, the tunneling between avoided crossings will
be more sensitive to the system parameters; this will leads to greater fluctuations of the particle
number in each well. Unfortunately, we are not able to verify this as our limit of computational
power. This analysis gives us some indication how the chaotic behavior in the mean-field model
is related to the structures in the corresponding second-quantized energy spectrum.

We emphasize that our model can also be used to describe a BEC system in a honeycomb
lattice near point K [56], and be applied in nonlinear waveguide systems [22,59]. As the optical
triple waveguides can be easily built in experiment, the tunneling dynamics that we found in
the mean-field model can be easily observed experimentally [59, 62].

4. Conclusion

In summary, we have investigated the tunneling dynamics of three BECs which are coupled
to each other weakly. This is done with both the mean-filed model and the second-quantized
model. Our results show that a loop structure appears in the mean-field energy bands imme-
diately after the interaction is turned on. This is accompanied by the appearance of avoided-
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Fig. 11. The probability Ai of the ith level (Ai = 〈φi|φt〉). In (a,b), the first, second, and third
largest Ai during the evolution are traced with black, green, and red stars, respectively, on
the energy levels. (a) c = 0.12,N = 8,v = 0.1; (b) c = 0.14,N = 8,v = 0.1. (c) The time
evolution of A11 (black), A7(green), A6 (red) for the case of (a). (d) The time evolution
of A7 (black), A8(green), A11 (red) for the case of (b). The sharp peaks in (c) and (d) are
caused by the avoided-crossings.

crossings in the corresponding second-quantized levels. We have also found that the tunneling
dynamics in this system is very sensitive to the system parameter, e.g., the interaction strength.
In the mean-field approach, the chaotic behavior in the system is found to be responsible for
this sensitivity. In the second-quantized model, this sensitivity is found to be related to the
concentration of large number of avoided crossings near γ = 0.

Our analysis can be easily extended to many other interesting cases, for example, the repul-
sive interaction and the dipole interaction [63, 64]. For the latter, the off-site interaction can
become important and it is interesting to see how the tunneling dynamics is affected by the off-
site interaction. More importantly, we plan to carry out more detailed analysis to explore the
corresponding relation between the quantum and classical chaos with this model in the future
research.

Appendix

A. The canonical equations of motion

Let n1 = |a1|2, n2 = |a2|2, n3 = |a3|2, θ1 = arga2 − arga1, and θ3 = arga2 − arga3. With the
constraint n1 +n2 +n3 = 1 and ignoring a total phase, we obtain a classical Josephson Hamil-
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tonian,

H = −c/2[n2
1 +n2

3 +n2
2]− γ(n1 −n3)

+v
√

n1n2 cosθ1 + v
√

n2n3 cosθ3

+v
√

n1n3 cos(θ3 −θ1). (9)

Considering n2 = 1−n1 −n3, then

H = −c/2[1+2n2
1 +2n2

3 +2n1n3 −2(n1 +n3)]

−γ(n1 −n3)+ v
√

n1(1−n1 −n3)cosθ1

+v
√

n3(1−n1 −n3)cosθ3

+v
√

n1n3 cos(θ3 −θ1). (10)

Here {n1,θ1} and {n3,θ3} are two pairs of canonical variables. So
dn j
dt =− ∂H

∂θ j
,

dθ j
dt = ∂H

∂n j
:

dn3

dt
=v

√
n3n2 sinθ3 + v

√
n1n3 sin(θ3 −θ1), (11a)

dθ3

dt
=− c(n3 −n2)+ γ +

v
√

n2

2
√

n3
cosθ3

− v
2
√

n2
(
√

n1 cosθ1 +
√

n3 cosθ3)

+
n1

2
√

n1n3
vcos(θ3 −θ1), (11b)

dn1

dt
=v

√
n1n2 sinθ1 + v

√
n1n3 sin(θ3 −θ1), (11c)

dθ1

dt
=− c(n1 −n2)− γ +

v
√

n2

2
√

n3
cosθ1

− v
2
√

n2
(
√

n1 cosθ1 +
√

n3 cosθ3)

+
n3

2
√

n1n3
vcos(θ3 −θ1). (11d)

where {n1,θ1} and {n3,θ3} are two pairs of canonical variables.
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