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Roles of energy eigenstates and eigenvalues in equilibration of isolated quantum systems
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We show that eigenenergies and energy eigenstates play different roles in the equilibration process of an
isolated quantum system. Their roles are revealed numerically by exchanging the eigenenergies between an
integrable model and a nonintegrable model. We find that the structure of eigenenergies of a nonintegrable model
characterized by nondegeneracy ensures that quantum revival occurs rarely whereas the energy eigenstates of
a nonintegrable model suppress the fluctuations for the equilibrated quantum state. Our study is aided with a
quantum entropy that describes how randomly a wave function is distributed in quantum phase space. We also
demonstrate with this quantum entropy the validity of Berry’s conjecture for energy eigenstates. This implies
that the energy eigenstates of a nonintegrable model appear indeed random.
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I. INTRODUCTION

How equilibration is achieved in an isolated quantum
system is a fundamental issue regarding the foundation of
quantum statistical mechanics. This issue has intrigued many
physicists [1–3]. In standard textbooks on quantum statistical
physics, one just assumes that quantum equilibration can be
achieved and assigns the equilibrated state certain properties
with postulates, such as equal a priori probability, to establish
microcanonical ensemble. In his well-known textbook [4],
Huang states, “The postulates of quantum statistical mechanics
are to be regarded as working hypotheses whose justification
lies in the fact that they lead to results in agreement with
experiments. Such a point of view is not entirely satisfactory,
because these postulates cannot be independent of, and should
be derivable from, the quantum mechanics of molecular
systems.” This issue has recently received renewed interest
[5–21] due to experimental developments especially in ultra-
cold atomic and molecular gases with remarkably high degree
of isolation and high-precision control of parameters [22–24].

In 1929 von Neumann addressed this fundamental issue
by proving quantum ergodic theorem and quantum H theorem
[1,3], where he claimed, “in quantum mechanics one can prove
the ergodic theorem and the H-theorem in full rigor and without
disorder assumptions; thus, the applicability of the statistical-
mechanical methods to thermodynamics is guaranteed without
relying on any further hypotheses.” Now these two theorems
have been reformulated in a more rigorous framework without
invoking ambiguous coarse graining [7,14,20]; in particular,
the quantum ergodic theorem is found to be closely related to
a modern term, normal typicality [5,25]. It is clear in these
studies that the structure of the quantum system’s eigenen-
ergies plays a crucial role: when the eigenenergies and their
gaps are nondegenerate, then the two theorems hold and the
isolated quantum system can equilibrate. The form of energy
eigenstates, that is, how they distribute either in position space
or in momentum space, is not important in these studies. This
is, of course, in agreement with the Gibbs distribution at equi-
librium, which is solely determined by the energies and density
of states. Due to its fundamental role in quantum equilibration,
the structure of eigenenergies was used to give a precise
definition of quantum ergodicity and quantum mixing [21].

Recently, a different point of view on quantum equilibra-
tion, which was already mentioned in Landau’s book as a
footnote [26], has received a great deal of attention. This
view is eigenstate thermalization hypothesis (ETH), which
is justified on the basis of random matrix theory [27] and
Berry’s conjecture [28–30]. According to ETH, the form
of energy eigenstates is crucial. In integrable systems, the
eigenstates look rather regular and are not thermalized; in
nonintegrable systems, the eigenstates should look random
according to Berry’s conjecture and are therefore thermalized.
Many numerical and theoretical results [30–39] on real many-
body systems including integrable and nonintegrable systems
turn out to support this hypothesis and this has stimulated
enormous research on many-body localization [40–46].

Although these two points of view are different, they do not
contradict each other. Most importantly, they agree on one very
important point: only nonintegrable isolated quantum systems
can equilibrate or thermalize. In this paper we try to clarify
the roles played by eigenenergies and energy eigenstates in
quantum equilibration by comparing an integrable model and
a nonintegrable model and exchanging their eigenenergies.

For an isolated quantum system, its dynamics is given by

|ψ(t)〉 =
∑

n

ane
−iEnt/h̄ |φn〉 , (1)

where |φn〉 is an energy eigenstate with eigenenergy En. The
coefficients an are independent of time and determined by the
initial state. The dynamics is clearly controlled by both eigen-
states |φn〉 and eigenenergies En. For a given quantum system,
if it is integrable, then both |φn〉 and En show characteristics
of an integrable system; if it is nonintegrable, then both |φn〉
and En are embedded with the features of a nonintegrable
system. However, numerically, we can have a dynamics that
is controlled by a set of integrable eigenenergies En with a
set of nonintegrable eigenstates |φn〉. Consider two models,
one is integrable and the other is nonintegrable. Suppose their
eigenstates and eigenenergies are, respectively, {|φi

n〉Ei
n} and

{|φc
n〉Ec

n}. By exchanging the two sets of eigenenergies, we
can numerically have four different dynamical evolutions:
(i) integrable eigenstates and integrable eigenenergies, (ii)
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integrable eigenstates and nonintegrable eigenenergies, (iii)
nonintegrable eigenstates and integrable eigenenergies, (iv)
nonintegrable eigenstates and nonintegrable eigenenergies.
For example, the third dynamics can be expressed as

|ψ ′(t)〉 =
∑

n

ane
−iEi

nt/h̄
∣∣φc

n

〉
. (2)

The second and third dynamics never occurs in a real physical
system. However, by studying them we are able to clarify
the roles played by energy eigenstates and eigenenergies in
dynamics: the nondegeneracy of eigenenergies ensures that
the initial state is dephased over time and quantum revival is
suppressed; the randomness in the nonintegrable eigenstates
keeps the fluctuations around the equilibrium small. Therefore,
nondegenerate eigenenergies and randomized eigenstates are
equally important for quantum equilibration of a nonintegrable
system but playing different roles.

In our numerical study, we use the quantum entropy for
pure states introduced in Ref. [20] to quantify the equilibration
process. This quantum entropy is defined by projecting a wave
function unitarily to phase space and describes how a wave
function is distributed in phase space. The more randomly
the wave function is distributed the bigger the entropy.
In the second part of our paper, we use this entropy to check
the validity of Berry’s conjecture [47] and show that the
eigenfunctions of a nonintegrable system indeed look random.
Our study finds that the quantum entropy for energy eigenstates
agrees very well with Berry’s conjecture at each energy
level and the entropy fluctuation among different eigenstates
is very small for the fully chaotic systems. Note that the
validity of Berry’s conjecture has been checked previously
with autocorrelation functions [48], amplitude distributions
[49–51], and statistics of nodal domains [52].

We organize the paper as follows. In Sec. II, we briefly
describe ripple billiards, and quantum phase space, and the
concept of quantum entropy for pure states. In Sec. III,
we compare the time evolution of a Gaussian wave packet
moving in a square billiard and a ripple billiard, representing
integrable and nonintegrable systems, respectively. We then
exchange their eigenenergies to create two artificial dynamics.
By comparing these different dynamics, we are able to identify
the roles of eigenenergies and eigenfunctions in quantum
equilibration of an isolated system. Section IV is to explain
why eigenfunctions in a chaotic system can play the role
identified in the preceding section. This is achieved by
comparing them to the wave functions constructed according
to Berry’s conjecture. We conclude in Sec. V.

II. MODEL AND QUANTUM ENTROPY FOR PURE STATE

In this section, we briefly introduce the models for our
numerical calculation, quantum phase space, and the quantum
entropy for pure states that we use to characterize the quantum
equilibration.

In our numerical calculation, we use the model of ripple
billiard [53], which is shown in Fig. 1. When a = 0, it becomes
the square billiard and it is an integrable system. When a > 0,
it is nonintegrable. In general, as a becomes larger, the billiard
is more chaotic [53]. The billiard is special in that the elements
of its Hamiltonian can be calculated analytically. As a result,

FIG. 1. Ripple billiard. The two curved boundaries are given by
x = ±b ∓ a cos(πy/b), respectively.

one can conveniently study its eigenenergies and eigenstates
in a systematic way. Details can be found in Ref. [53]. It would
be interesting to examine other models [54] in the future; in
this paper, we focus on our simple model.

The nearest-neighbor level spacing statistics follows a
Poisson distribution for the integrable system with many
energy degeneracies, while it follows a Wigner-Dyson distri-
bution for the nonintegrable system with no energy degeneracy
in the even-even modes. The distributions are shown in Fig. 2.

Besides the well-known von Neumann entropy, another
quantum entropy was introduced by von Neumann in his 1929
paper [1]. This quantum entropy was defined for pure states.
However, von Neumann’s definition involves ambiguous
coarse graining, making numerical computation impossible. In
Ref. [20], von Neumann’s definition was modified and a new
quantum entropy for pure states was defined with Wannier
functions obtained with Kohn’s method [55]. To define this
entropy, we need first to construct a quantum phase space: (i)
the classical phase space is divided into Planck cells; (ii) each
Planck cell is assigned a Wannier function and all the Wannier
functions form a set of a complete orthonormal basis [20]. The
Wannier functions are constructed by orthonormalizing a set
of Gaussian wave packets of width ζ ,

gjx,jk
≡ exp

[
− (x − jxx0)2

4ζ 2
+ ijkk0x

]
, (3)

where jx and jk are integers. When x0k0 = 2π , this set of
the resulted Wannier functions is complete. In this paper,
parameters are chosen as x0 = 1,k0 = 2π , and ζ = (2π )−1.
The details of this construction of quantum phase space
can be found in Ref. [20]. Once the Wannier functions are
obtained, they are used to project a wave function unitarily
onto the quantum phase space. To give unfamiliar readers a
sense of this quantum phase space, the 100th eigenfunction
of a one-dimensional harmonic oscillator is mapped in this
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FIG. 2. Nearest-neighbor level spacing statistics for square bil-
liard a/b = 0 in (a) and ripple billiard a/b = 0.2 in (b) with even-even
modes.

quantum phase space and is shown in Fig. 3. The wave function
concentrates on the classical trajectory.

If |wj 〉 is the Wannier function at Planck cell j , then
|〈ψ |wj 〉|2 is the probability at Planck cell j for a wave function
ψ . Our quantum entropy for pure state ψ is defined with these
probabilities as

Sw(ψ) ≡ −
∑

j

〈ψ |W j |ψ〉 ln〈ψ |W j |ψ〉, (4)

where W j ≡ |wj 〉〈wj | is the projection to Planck cell j . It is
clear from this definition that the entropy Sw(ψ) describes how
a quantum state ψ is spread out in the phase space: the more
Planck cells that ψ occupies the bigger its entropy.

In our numerical calculation, length is in an arbitrary unit
of L. Correspondingly, the wave vector k is in unit of 1/L and
the energy is in unit of h̄2/2mL2, where m is the particle mass.
Throughout this paper we omit these units for convenience.
For example, when we say b = 5.5 we mean b = 5.5L. The

FIG. 3. The 100th eigenfunction of a one-dimensional harmonic
oscillator in the quantum phase space. The red circle is the
corresponding classical trajectory. jx and jk are indices labeling
Planck cells.

j in wj stands for {jx,jk} in a one-dimensional system and
{jx,jy,jkx

,jky
} in a two-dimensional system.

Here are the details on the quantum phase space in
our numerical calculation. Taking b = 5.5, a/b = 0.2 for
example, the ripple billiard is confined in a rectangle area
13.2 × 11. Every Planck cell in position space is 1 × 1.
When we map a wave function in a ripple billiard onto the
phase space, we need Njx = 13 × 11 position indices with
jx ∈ [−6,6]Z and jy ∈ [1,11]Z to cover the whole real space.
The maximum wavelength corresponding to the energy scale
in our numerical computation is |k| = 4 × 2π . Therefore, we
need Njk = 9 × 9 momentum indices with jk = [−4,4]Z in
both the kx direction and the ky direction. The total number
of Planck cells is N = Njx × Njk . If the wave function ψ

distributes equally in the N Planck cells, the entropy would
be Smax = ln N . The mesh points is 180 × 180 dividing the
billiard into numerically discrete area.

III. TIME EVOLUTION

Our main aim of this paper is to identify the roles
played by eigenstates and eigenenergies in quantum dynamics,
particularly in the dynamics that leads to equilibration. For this
purpose, we choose two different billiards: (i) square billiard
(a/b = 0); (ii) chaotic ripple billiard (a/b = 0.2). We not only
study and compare their dynamics but also create two artificial
dynamics by exchanging these two billiards’ eigenenergies.
Let {|φi

n〉 ,Ei
n} be the set of eigenstates and eigenenergies for

the square billiard and {|φc
n〉′′ Ec

n} be the set of eigenstates and
eigenenergies for the ripple billiard. The dynamics of these
two billiards can be described formally as

|ψi(t)〉 =
∑

n

ane
−iEi

nt/h̄
∣∣φi

n

〉
, (5)

and

|ψc(t)〉 =
∑

n

bne
−iEc

nt/h̄
∣∣φc

n

〉
, (6)
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where the coefficients an’s and bn’s are determined by the
initial condition. By exchanging their eigenenergies, we can
create two more dynamics

|ψic(t)〉 =
∑

n

ane
−iEc

nt/h̄
∣∣φi

n

〉
, (7)

and

|ψci(t)〉 =
∑

n

bne
−iEi

nt/h̄
∣∣φc

n

〉
. (8)

These two dynamics are artificial but will help us to identify
the roles of eigenstates and eigenenergies.

The numerical results of these four dynamics are shown in
Fig. 4. The initial state for these four different dynamics is the
same and it is a moving Gaussian wave packet,

�(0) = exp

[
−x2 + (y − b)2

4σ 2
+ i(kxx + kyy)

]
. (9)

With numerically computed eigenfunctions |φi
n〉 and |φc

n〉, we
determine the coefficients an’s and bn’s. This allows us to
find the wave functions at any time t . We finally compute
the entropies for these wave functions with Eq. (4). How the
entropies change with time is shown in Fig. 4.

There are four very different dynamics in Fig. 4. In case
(a) (integrable eigenstates and integrable eigenenergies), the
entropy oscillates regularly with time with large amplitudes.
In case (b) (integrable eigenstates and nonintegrable eigenen-
ergies), the entropy increases quickly to a large value and
stays at this value with relatively large fluctuations. In case (c)
(nonintegrable eigenstates and integrable eigenenergies), the
entropy similarly relaxes quickly to a large value with small
fluctuations. However, the entropy drops back almost to its
initial value after a certain period. This period is consistent with
the oscillation period in the case (a). This is the well-known
phenomenon of quantum revival. The period of quantum
revival is determined by energy differences Em − En in the
off-diagonal terms in the evolution.

|ψ(t)〉〈ψ(t)| =
∑

n

|an|2|φn〉〈φn|

+
∑
m�=n

a∗
mane

i(Em−En)t/h̄|φm〉〈φn|. (10)

The eigenenergies of the integrable square billiard system
have an expression as Egh = (π/2b)2(m2

1 + m2
2), where m1

and m2 are positive integers. So the smallest nonzero energy
difference is �Es = (π/2b)2. Other energy differences are
integral multiples of �Es . Therefore, the period of quantum
revival is the period corresponding to the smallest energy
difference 2πh̄/�Es , which agrees with the period seen in
Figs. 4(a), 4(c). In case (d) (nonintegrable eigenstates and
nonintegrable eigenenergies), the entropy quickly relaxes to its
maximum value and stays there with very small fluctuations.
There is no quantum revival.

The results in Fig. 4 are quite revealing. To reach quantum
equilibrium as in Fig. 4(d), we need both nonintegrable
eigenstates and nonintegrable eigenenergies. The noninte-
grable eigenstates ensure that the fluctuations are small once

FIG. 4. Time evolution for the quantum entropy in four situations:
(a) integrable eigenstates and integrable eigenenergies; (b) integrable
eigenstates and nonintegrable eigenenergies; (c) nonintegrable eigen-
states and integrable eigenenergies; (d) nonintegrable eigenstates
and nonintegrable eigenenergies. The scale of the ripple billiard is
a = 1.1,b = 5.5 while the length of side for the square billiard is b.
Initial Gaussian wave packet parameters: σ = 1, ky = 0; kx = a + b

for ripple billiard and kx = b for square billiard. T is the time when
the envelope of the initial wave packet with group velocity Vg = 2kx

return to the center of the billiard after reflecting once from one
boundary along x direction. L is the length unit; 1/L is the unit for k.
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the equilibrium is reached. The nonintegrable eigenenergies
guarantee no occurrence of large deviation in a physically
meaningful time. These two important points are not hard to
understand intuitively: the nonintegrable eigenenergies lack
of degeneracy in eigenenergies and their gaps that is needed
for regular quantum dynamics; the nonintegrable eigenstates
are rather random according to Berry’s conjecture. The former
has been discussed extensively in Refs. [1,7,20,21]. We will
examine the latter in detail in the next section.

Before we proceed further, we offer a few remarks on
quantum revival to avoid potential misunderstanding. (i) The
quantum revival in the square billiard does not depend on
its initial condition. (ii) Quantum revival occurs in integrable
systems [56]; however, integrability does not mean that there
is quantum revival for all observables [57,58]. The latter does
not contradict our statement that the structure of eigenenergies
of nonintegrable systems ensures that there is no frequent
quantum revival.

IV. ENTROPY FOR EIGENSTATES AND BERRY’S
CONJECTURE

In the preceding section, we see that nonintegrable eigen-
states are essential to keep the fluctuations small at equilibrium.
The intuitive reason is that these nonintegrable eigenstates are
random according to Berry’s conjecture, which is the base
for ETH [28]. However, there are two important issues that
have so far no satisfactory answers. The first one is how
to measure quantitatively the randomness in eigenstates. If
there is such a measure of randomness, how does the eigen-
wave-function constructed artificially according to Berry’s
conjecture compare to the real eigenstates? The other issue
is that there are many quantum scar eigenstates. These
eigenstates look regular as their amplitudes concentrate along
classical periodical orbits [59]. How often do they appear?
If there is a quantitative measure of randomness, how far do
these quantum scar states deviate from other eigenstates? We
examine these two issues in this section.

FIG. 5. (a1) the 1000th eigenstate in the position space; (b1) the corresponding wave function ψB constructed according to Berry’s conjecture
in the position space; (c1) the 857th eigenstate (which is a scar state) in the position space. (a2), (b2), (c2) Their respective representation in
the momentum space. (a3), (b3), (c3) Their representations in the quantum phase space with the position and momentum along the y direction
fixed at jy = 5,jky

= 0. For the billiard, a = 0.55 and b = 5.5. L is the unit of length.
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The quantum entropy Sw(ψ) defined in Eq. (4) is a
good measure of the randomness in eigen-wave-functions. As
the wave function is projected unitarily onto the quantum
phase space, Sw(ψ) contains information both in position
and momentum. In contrast, the probability ψ(x) [ψ(k)] has
information only in position (or momentum). We shall use it
to measure the randomness in eigen-wave-functions.

Berry’s conjecture states that each eigenfunction of a
classically chaotic quantum billiard system is a superposition
of plane waves with random phase and Gaussian random am-
plitude but with the same wavelength [28,47]. Mathematically,
such a wave function with wavelength k can be expressed as

ψB =
∫

dkA(k) exp{−i[k · r + θ (k)]}, (11)

where the modulus of k is fixed but it can point to any direction.
Amplitude A(k) is a Gaussian random distribution for k in
different direction. θ (k) is the random phase.

For comparison, we calculate the wave functions ψB for
every wavelength k that corresponds to an eigenstate of the
ripple billiards. We first look at an example, where ψB is
computed with the wavelength corresponding to the 1000th
eigenstate for the ripple billiard (a = 0.55,b = 5.5). These two
wave functions are plotted in Fig. 5 with the 857th eigenstate,
which is a scar state [59]. The wave functions are compared in
three different spaces: in position space, in momentum space,
and in quantum phase space. It is clear from the figure that the
1000th eigenstate and its corresponding ψB are qualitatively
similar: both their wave functions are quite spread out in
all these three spaces. This is confirmed by our entropy:
for the 1000th eigenstate Sw = 7.11; for the Berry wave
function ψB , Sw = 7.09. As a scar state, the 857th eigenstate
looks qualitatively different from the 1000th eigenstate. In
the position space, the 857th eigenstate concentrates on a

periodic trajectory that describes a classical particle bouncing
horizontally in the middle of the billiard. As a result, its
momentum distribution concentrates along certain directions
and its distribution in the phase space focuses on some areas.
Quantitatively, its entropy is Sw = 6.57, significantly smaller
than the other two wave functions. Note that ψB is constructed
without respecting the symmetry of the system so that it does
not have the symmetries that we see in the 1000th and 857th
eigenstate.

We now compare the Berry wave functions ψB and the
eigenstates of ripple billiards systematically. For a given
billiard, the entropies are computed for its eigenstates from the
first to 1200th and their corresponding Berry wave functions
ψB . The results for five different billiards are shown in Fig. 6,
where the blue lines are for the eigenstates and the red lines
are for ψB . For the billiard with a/b = 0.01, we see that
the entropies of eigenstates have a general trend to increase
with energy levels and this trend is shared by the Berry wave
functions ψB . However, the entropies of eigenstates have much
larger fluctuations compared to ψB . As we increase the ratio
a/b and the billiard gets more chaotic [19,53], the general
trend of the entropy does not change. However, the fluctuations
become smaller. This is quantitatively shown in the last panel.
Our numerical observation is that the large fluctuations for
the billiards with a/b � 0.1 are caused by scar states, which is
about 10% of all the eigenstates. Note that for the billiards with
small a/b, they are near integrable and it is hard to distinguish
scar states and other regular-looking eigenstates.

We have also averaged the entropy over every nearest 30
eigenstates. The results are plotted as yellow lines in Fig. 6.
Even for near-integrable billiards, the averaged entropy agrees
well with the entropy of the Berry wave function ψB with
small fluctuations. The agreement improves as the ratio a/b

FIG. 6. (a1)–(a5) Quantum pure state entropy Sw of eigenfunctions of the ripple billiards and their corresponding ψB constructed according
to Berry’s conjecture. The x axis is the eigenenergy level. Blue lines represent the results of the ripple billiard; red lines represent the results
for ψB . Yellow lines are obtained from the blue dots by averaging the nearest 30 eigenstates (the standard microcanonical ensemble average).
(a6) Average entropy fluctuation around its microcanonical ensemble average for different a/b.
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increases. Such an agreement implies that once the averaging
is over a large number of eigenstates how each eigenstate looks
is no longer important. This shows that the postulate of equal
a priori probability in standard textbooks [4] over an energy
shell of many eigenstates is valid even for integrable systems.
That is why it is not necessary to discuss the integrability of a
system in standard textbooks on quantum statistical mechanics
[4,26]. This also implies that ETH is not a necessary condition
for equilibration of a closed quantum systems. This agrees
with the numerical results in Ref. [36].

Though the billiard model is a single-particle system, we
believe our results are also applicable for interacting system for
the following reasons. (i) The energy level spacing statistics is
related to the integrability of a system, whether it has a single
particle or interacting many particles. This is manifested by the
fact that the energy level spacing statistics can be explained
with the random matrix theory. In fact, the random matrix
theory was developed to explain the energy levels of a nucleus,
which consists of interacting protons and neutrons [60]. It
was found later that this theory also works for single-particle
chaotic systems [27]. (ii) In Ref. [28], Berry’s conjecture was
applied to interacting systems to establish ETH. Therefore,
our results regarding eigenfunctions also apply for interacting
systems wherever Berry’s conjecture works.

V. CONCLUSIONS

We have identified the roles of eigenstates and eigenen-
ergies in quantum equilibration of an isolated system. This
is achieved by exchanging the set of eigenenergies between
an integrable system and a chaotic system in our numerical
simulations. Both the nondegeneracy of eigenenergies and the
randomness in eigenstates are equally important for a nonin-
tegrable system to achieve equilibration. The nondegeneracy
of eigenenergies ensures the initial state is dephased over time
and that the quantum revival is suppressed. The randomness in
the nonintegrable eigenstates keeps the fluctuations around the
equilibrium small. We have also shown in terms of a quantum
pure state entropy that Berry’s conjecture can quantitatively
captures the randomness of the eigenstates.
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