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We study theoretically two coupled periodically curved optical waveguides with Kerr nonlinearity. We find
that the tunneling between the waveguides can be suppressed in a wide range of parameters. This suppression
of tunneling is found to be related to the coherent destruction of tunneling in a linear medium, which in
contrast occurs only at isolated parameter points. Therefore, we call this suppression nonlinear coherent
destruction of tunneling. This localization phenomenon can be observed readily with current experimental
capability; it may also be observable in a different physical system, the Bose-Einstein condensate.
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A periodic driving force is an important and effective tool
for coherently controlling quantum tunneling. This has been
well demonstrated with a paradigmatic model, a free particle
in a double-well potential and driven by a periodic external
field �1�. With appropriately tuned parameters, the periodic
driving force is able not only to enhance tunneling �2–4� but
also to completely suppress it �5–8�. The latter is rather sur-
prising and was discovered first by Grossmann et al. �5�. It is
now known as coherent destruction of tunneling �CDT� �5�.
When it occurs, a localized wave packet prepared in one well
remains in the same well and does not tunnel to the other
well. In a periodically driven system, there are Floquet states
and associated quasienergies �9�. The CDT is found to occur
only at isolated degeneracy point of the quasienergies �5,6�.

Recently, this quantum phenomenon of CDT was ob-
served experimentally with two coupled periodically curved
waveguides �10� �see Fig. 1�. In this classical optical system,
the Maxwellian wave mimics the quantum wave, while the
periodic driving force is achieved by bending the
waveguides periodically. Such a waveguide system is an
ideal laboratory system for demonstrating the coherent con-
trol of quantum tunneling by a periodic driving force. For
example, tunneling enhancement has recently also been re-
ported with two optical waveguides �11�.

In this Rapid Communication we consider a similar
coupled waveguide system but with Kerr nonlinearity. With
the well-known two-mode approximation, the system can be
described by a two-mode nonlinear model with an external
periodic driving force. This driving is characterized by two
parameters, its frequency w �the inverse of the period of the
curved waveguide� and the strength S �the curving magni-
tude of the waveguides� of the driving force. By numerically
solving this two-mode nonlinear model, we find that the sup-
pression of tunneling between the two coupled waveguides
happens for a wide range of the ratio S /w. This is in stark
contrast to the CDT in curved linear waveguides, which oc-
curs at an isolated point of S /w, where the quasienergies of
the system are degenerate. This extension of tunneling sup-
pression region is caused by nonlinearity. Therefore, we call
it nonlinear coherent destruction of tunneling �NCDT�. We
find that the range of the ratio S /w for NCDT increases

steeply from zero with nonlinear strength, indicating that
there is no threshold of nonlinearity for NCDT to occur. The
Floquet states and the quasienergies of this nonlinear model
are also studied. We discover that there can be more than two
Floquet states and quasienergies in a certain range of ratio
S /w. These additional Floquet states form a triangle in the
quasienergy levels. Our study reveals that these additional
Floquet states are closely related to the NCDT.

The current experimental capability with nonlinear
waveguides is examined. We find that the observation of
NCDT is well within the current experimental ability. Note
that the nonlinear two-mode model that we derived for the
waveguides can also be used to describe the dynamics of a
Bose-Einstein condensate in a double-well potential under a
periodic modulation �12–14�. This indicates that NCDT may
also be observable with Bose-Einstein condensates.

In a weakly guiding dielectric structure, the effective two-
dimensional wave equation for light propagation in nonlinear
directional waveguides reads �15�
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where � is the free-space wavelength of the light, x0�z�
=A cos�2�z /��, n2 is the nonlinear refractive index of the
medium, and V�x���ns

2−n2�x�� / �2ns��ns−n�x�, where n�x�
and ns are, respectively, the effective refractive index profile
of the waveguides and the substrate refractive index. For
coupled waveguides as in Fig. 1, n�x� and thus V�x� have a
double-well structure. The scalar electric field is related to
� through E�x ,z , t�= �1/2��ns�0c0 /2�−1/2���x ,z�exp�−i�t
+ iknsz�+c.c. �, where k=2� /�, �=kc0, and c0 and �0 are the
speed of light and the dielectric constant in vacuum, respec-
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FIG. 1. Schematic drawing �not to scale� of two periodically
curved optical waveguides placed parallel to each other.
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tively. The light intensity I �in W/m2� is given by
I= ���2= �ns�0c0 /2� �E�2. By means of a Kramers-Henneberger
transformation �16� x�=x−x0�z� ,z�=z, and ��x� ,z��
=��x� ,z��exp�−i�2ns� /��ẋ0�z��x�− i�ns� /���0

z�d� ẋ0
2���� �the

overdot indicates the derivative with respect to z��, Eq. �1� is
then transformed to
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� H0� − n2���2� + x�F�z��� , �2�

where F�z��=nsẍ0�z��= �4�2Ans /�2�cos�2�z� /�� is the
force induced by waveguide bending. It is clear that if we
view z �or z�� as time t, the above equations can be regarded
as describing the system of a nonlinear quantum wave under
periodic driving.

We assume that the light in each waveguide of the coupler
is single moded and neglect excitation of radiation modes.
With the standard two-mode approximation �17–19�, we
write

��x�,z�� = e�−2i�/��E0z��c1�z��u1�x�� + c2�z��u2�x��� , �3�

where u1 and u2 are localized waves in two waveguides
while the two coefficients are normalized to one,
�c1�2+ �c2�2=1. E0 is defined as E0=�u1,2

* H0u1,2dx�. It is rea-
sonable to assume that the localized wave is a Gaussian,
u1,2�x��=	D exp�−�x�±a /2�2 /2b2�, where a is the distance
between the two waveguides, b is the half-width of each
waveguide, and D is related to the input power of the system
P�0� as D= P�0� / �	�b�. P�0� has units of W/m. The two-
mode approximation eventually simplifies Eq. �2� to

ic1̇ =
v
2

c2 −
S

2
cos�wz��c1 − 	�c1�2c1, �4�

ic2̇ =
v
2

c1 +
S

2
cos�wz��c2 − 	�c2�2c2, �5�

where we have set S=8�3aAns /�2�, v=4���u1
*H0u2dx� /�,

the modulation frequency w=2� /�, and 	
=	2�n2P�0� / ��b� is an effective nonlinear coefficient.
When S=0, Eqs. �4� and �5� will be reduced to the well-
known Jensen equation �19�. Note that P�0� has units of
W/m because the waveguide is two dimensional in our the-
oretical model. In experiments, P�0� has units of W and the
waveguides are three dimensional. As a result, to relate our
nonlinear parameter to real experimental parameters, we
choose 	=2�n2P�0� / ��
eff�, where 
eff is the effective cross
section of the waveguide, according to Ref. �20�.

To investigate the tunneling effect, we solve the
two nonlinear equations �4� and �5� numerically
with the light initially localized in one of the two
waveguides. With the numerical solution, we compute the
intensity of the light staying in the initial well by P��z��
= �c1

*�0�c1�z��+c2
*�0�c2�z���2. Three sets of our results are

shown in Figs. 2�a�–2�c�. In the first set for S /w=1.8, we see
that P��z�� oscillates between zero and one for both the lin-
ear case 	=0 and the nonlinear case 	 /v=0.4, demonstrating

no suppression of tunneling. In the second set for S /w=2.2,
we see a different scenario: the oscillation of P��z�� is lim-
ited between 
0.8 and 1 for the nonlinear case, showing
suppression of tunneling, while there is no suppression for
the linear case. In the third set for S /w=2.4, suppression of
tunneling is seen for both linear and nonlinear cases. Such
suppression of tunneling for the linear case is known as co-
herent destruction of tunneling �5�. These numerical results
demonstrate that nonlinearity can extend the parameter range
of the suppression of tunneling. We call this phenomenon
nonlinear coherent destruction of tunneling.

The extension of the tunneling suppression regime of the
ratio S /w by nonlinearity is more clearly demonstrated in
Fig. 3�a�. In this figure, we have used localization, which is
defined as the minimum value of P��z��, to measure the sup-
pression of tunneling. When there is large suppression of
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FIG. 2. Intensity of light in the initially populated waveguide for
the case of 	=0 �dashed lines� and 	 /v=0.4 �solid lines� with
S /w��a� 1.8, �b� 2.2, and �c� 2.4. Distance z� is in units of 1 /v.
w /v=10.
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FIG. 3. �a� Localization as a function of S /w. The solid line is
for the nonlinear case 	 /v=0.4 and the dashed line is for the linear
case 	=0. w /v=10. �b� Width � of the peak in �a� as a function of
nonlinearity strength 	 /v �solid line�. The dashed line is for the
width of the quasienergy triangle in Fig. 4.
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tunneling, the localization is close to 1; when there is no
suppression, localization is zero. As clearly seen in Fig. 3�a�,
the peak of localization �solid line� for 	 /v=0.4 is much
wider than the peak for 	 /v=0.0 �dashed line�. In Fig. 3�b�,
we see that the width of the localization � increases almost
linearly with the nonlinearity 	 �solid line�. Note that, ana-
lytically, CDT occurs only at isolated points. That it has a
narrow range in Fig. 3�a� is because the evolution time is
finite in a numerical simulation.

As is well known, the CDT is connected to the degen-
eracy point of the quasienergies in the system �5�. Although
our system is nonlinear, one can similarly define its Floquet
state and quasienergy �13�. That is, Eqs. �4� and �5� have
solutions in the form of �c1 ,c2�=e−i�z��c̃1�z�� , c̃2�z���, where
both c̃1 and c̃2 are periodic with a period of �. These Floquet
states and corresponding quasienergies � can be found nu-
merically. We choose a different numerical method from Ref.
�13�. We first expand the periodic functions c̃1,2 in terms of
Fourier series with a cutoff. After plugging them into Eqs.
�4� and �5�, we obtain a set of nonlinear equations for the
Fourier coefficients. By solving these equations numerically,
we obtain the Floquet states and corresponding quasienergies
�. The results are plotted in Fig. 4, where we witness a strik-
ing difference between the linear and nonlinear cases. As
seen in Fig.4�a�, for the linear case, there are two Floquet
states for a given value of S /w and there is only one isolated
degeneracy point. For the nonlinear case, we notice that there
are four Floquet states and three quasienergies in a certain
range of S /w with two of the Floquet states degenerate. The
three quasienergies form a triangle in the quasienergy levels
as seen in Figs. 4�b� and 4�c�. Our numerical computation
also shows that the width of the quasienergy triangle in-
creases with nonlinearity 	 as shown in Fig. 3 �dashed line�.
As this increasing trend is similar to the localization width
�, this offers us the first glimpse of a link between NCDT
and the quasienergies. It is worthwhile noting that the width
in Fig. 3 goes to zero as the nonlinearity parameter 	 de-
creases to zero. This shows that NCDT occurs for any
strength of nonlinearity; there is no threshold. Since the right
corner of the triangle can be open, we define the width of the
quasienergy triangle as the horizontal distance between the
left corner and the upper corner.

A firm link between the NCDT and the triangle structure
in the quasienergies can be established by looking into the
Floquet states. We focus on the Floquet states that corre-
spond to the lowest quasienergies in Fig. 4. To measure how
the Floquet state is localized in one of the two waveguides,
we define �c1�2�= ��0

�dz� �c1�2� /� for a given Floquet state
�c1 ,c2�. We have plotted this value for the lowest Floquet
states in Fig. 5. In this figure, we see clearly that only the
Floquet states on the quasienergy triangle are localized. This
thus demonstrates a clear link between the quasienergy tri-
angle and the NCDT. That there are two lines in Fig. 5 re-
flects the fact that there is a twofold degeneracy for the low-
est quasienergies on the triangle.

The triangular structure in the quasienergy is very similar
to the energy loop discovered within the context of nonlinear
Landau-Zener tunneling �21�. In fact, they are mathemati-
cally related. For high frequencies, w�max�v ,	�, which is
usually the case for current experiments with optical
waveguides, we take advantage of the transformation

c1,2 = c1,2� exp�±iS sin�wz��/2w� . �6�

After averaging out the high-frequency terms �14�, we find a
nondriving nonlinear model,

ic1�̇ =
v
2

J0�S/w�c2� − 	�c1��
2c1�, �7�

ic2�̇ =
v
2

J0�S/w�c1� − 	�c2��
2c2�, �8�

where J0 is the zeroth-order Bessel function. It is clear from
the transformation in Eq. �6� that the eigenstates of the above
time-independent nonlinear equations correspond to the Flo-
quet states of Eqs. �4� and �5�. We have computed the eigen-
states of Eqs. �7� and �8� and the corresponding eigenener-
gies, which are plotted as circles in Fig. 4. The consistency
with the previous results is obvious. As is known in Ref.
�21�, the above nonlinear model admits additional eigen-
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FIG. 4. Quasienergies at �a� 	=0; �b� 	 /v=0.4; �c� 	 /v=0.8.
Solid lines are for numerical results obtained with Eqs. �4� and �5�
and circles for the approximation results for high frequencies with
Eqs. �7� and �8�. w /v=3.
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FIG. 5. Intensity in the first well for every Floquet state in the
lowest quasienergy level at 	 /v=0.4, w /v=3.
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states when 	�J0�S /w�v. Therefore, this can be regarded as
the condition for the extra Floquet states to appear for the
driving nonlinear model Eqs. �4� and �5� at high frequencies.

So far, we have focused on self-focusing materials. Our
approach and results will be very similar if one considers
instead self-defocusing materials, for which the nonlinear re-
fractive index n2 in Eq. �1� should be negative. Nonlinear
coherent destruction of tunneling still occurs and the trian-
gular structure also appears in the quasienergy levels but its
direction is reversed as compared to the self-focusing case.

At present the nonlinear waveguides are readily available
in laboratories �20,22,23�. We take the experimental
parameters in Ref. �22� to estimate our theoretical values in
Eqs. �4� and �5�. The wavelength of the laser light is
�=1.55 �m, the effective cross-sectional area of the
waveguide is 
eff=12 �m2, the nonlinear index
n2=1.2�10−13 cm2/W, and the shortest length for the light
transfer from one waveguide to the other in the weak non-
linearity limit is Lc�2 cm. With the power input in the
waveguides P�0�
100 W, we have

	

v
=

2�n2P�0�Lc

��
eff
� 2. �9�

This shows that strong nonlinear waveguides are available at
optical laboratories and nonlinear coherent destruction of
tunneling can be visualized in an optical experiment similar
to the one in Ref. �10�.

We note that the “localization” phenomenon called NCDT
by us was studied in the name of self-trapping in Refs.
�12–14�. However, for us, NCDT is a more appropriate name
due to its close connection to CDT. Self-trapping is a purely
nonlinear phenomenon without any external driving and oc-
curs only above a certain critical value of nonlinearity �24�.
In contrast, there is no threshold value of nonlinearity for
NCDT to occur. This important fact may be utilized to lower
the threshold light power of an all-optical switching devices
�22,23�. The details will be discussed elsewhere.

In conclusion, we have studied the light propagation in a
nonlinear periodically curved waveguide directional coupler.
We have found a different type of suppression of tunneling in
this system, which is induced by nonlinearity and has no
linear counterpart. We call it nonlinear coherent destruction
of tunneling in analogy to a similar but different phenom-
enon in linear driving systems, coherent destruction of tun-
neling. The NCDT occurs for an extended range of ratio
S /w, where S is the strength of the driving and w is its
frequency. We have found that the NCDT is closely related
to a triangular structure that appeared in the quasienergy lev-
els of the nonlinear system. We have also pointed out that
observation of the nonlinear phenomenon is well within the
capacity of current experiments.
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