

Present Status and Future Prospect of the Power Electronics Based on Widegap Semiconductors

2007.11.22

National Institute of Advanced Industrial Science & Industry Power Electronics Research Center

Hajime Okumura

Establishment of New AIST (Re-organization of Japanese National Institutes)

Beijing University Seminar Beijing, China, 2007.11.22

Organization of new AIST

2003.3

Beijing University Seminar Beijing, China, 2007.11.22

Mission and Activity Area

- o Mission
 - (a) **Industrial infrastructure technology**, including measurement standards, geological surveys, and the development of base technologies necessary for the maintenance of the techno-infrastructure of Japan.
 - (b) **Energy and environmental technology**, which because of long lead times and high risk require the government to search for solutions.
 - (c) **Interdisciplinary and broad-spectrum research activities** to promote innovation and reinforce the international competitive strength of Japanese industry and encourage the creation of new industries.

σ Activity (Research Fields)

- (1) Life Science and technology
- (2) Information Technology
- (3) Environment and Energy
- (4) Nanotechnology, Materials and Manufacturing
- (5) Geological Survey and Geoscience, Marine Science and Technology
- (6) Standards and Measurement Science and Technology

Research Scheme and Fund

- σ Subsidy from METI,
- σ Entrustment from METI,
- σ Entrustment from other ministries,
- Subsidy or entrustment from public research funding organizations such as NEDO, JST
- Entrustment from or collaboration with private companies

Trend of recent governmental fund

- Industrialization,
- Collaboration of Univ., National Inst. and Private Sector

Mission of PERC

- Development of the electronics based on widegap semiconductor materials and science,
- Application of the related technology to actual **information and energy networks** in the human society, in order to contribute to the **innovation of life line and energy saving**

Teams of PERC

Wafer & Characterization Team
 SiC Power Device Team
 GaN Power Device Team
 GaN Power Device Team
 Power-Unit Super-Design Team
 Super-Node Network Team
 Advanced power electronics promotion team
 SiC bulk & epitaxial growth, wafer characterization
 SiC device technology
 III-Nitride device technology
 Design & simulation of power devices and modules
 Networking technology using low-loss power devices
 Industrialization of power device technology

Widegap semiconductors •SiC •III-nitrides

Electron devices (high-power)

High-frequency device (analog appl.)Switching device (digital appl.)

- 1. Importance of wireless communication, power electronics in the 21th century
- 2. Requirements from system application to high-power electron device
- **3.** Characteristics of widegap semiconductors
- 4. High-power operation by widegap semiconductor devices
- 5. Present R&D status of high-power electron devices
- 6. Problems and future prospect

(SiC devices or GaN devices ?)

Infrastructure of the 21th century

Beijing University Seminar Beijing, China, 2007.11.22

Various applications of wireless communication

Beijing University Seminar Beijing, China, 2007.11.22

Trend of Power FET Specification for Mobile Telephone Base Station

Beijing University Seminar Beijing, China, 2007.11.22

[出所]『総合エネルギ統計」 [出典]資源エネルギー庁(編):エネルギー2002、(株)エネルギーフォーラム (2001年12月10日)p.261

Application Field of Power Electronics

Example of Power device usage in Electric Power Converter

Analysis of Power Loss in Typical Electric Power Converters

Components of loss Power devices : Passive elements = 60% : 40%

Lidow, et.al, Proc. of IEEE, 89, 803 (2001)

National Institute of Advanced Industrial Science and Technology,

Beijing University Seminar Beijing, China, 2007.11.22

Device Specification Requirements from Application Needs

High-frequency devices for wireless communication

Enlarged frequency domain,
large-capacity high-speed communication,
broad band
long-distance transmission
broad band, low distortion
high-efficiency, low-loss, small size

Switching devices for power electronics

- 1. High blocking voltage:
- 2. Low on-resistance:
- applicability, reliability reduction of conduction loss
- 3. High switching speed:
- 4. Low electrostatic capacity : reduction of switching loss, high-speed switching

small size

5. High tolerance:

reliability, safety

What is Widegap Semiconductors ?

Lattice Constants and Bandgap

Beijing University Seminar Beijing, China, 2007.11.22

Physical Properties of Semiconductors

Material	Eg eV	8	μ_{v} cm ² /Vs 10 ⁶	E _c V/cm	v _{sat} 10 ⁷ cm∕s	к W/cmK	band type
Si	1.1	11.8	1350	0.3	1.0	1.5	I
GaAs	1.4	12.8	8500	0.4	2.0	0.5	D
c-GaN	3.27	9.9	1000	1	2.5	1.3*	D
h-GaN	3.39	9.0	900	3.3	2.5	1.3	D
3C-SiC	2.2	9.6	900	1.2	2.0	4.5	I
6H-SiC	3.0	9.7	370 ^a , 50 ^c	2.4	2.0	4.5	I
4H-SiC	3.26	10	720 ^a , 650 ^c	2.0	2.0	4.5	I
AlN	6.1	8.7	1100 1	1.7	1.8	2.5	D
Diamond	5.45	5.5	1900	5.6	2.7	20	I

a: along a-axis, c: along c-axis, *: estimate

Figures of Merits of Several Semiconductors and their Hetrostuructures

Material	Johnson's FM $(E_c v_{sat}/\pi)^2$	Keyes's FM $\kappa (v_{sat}^{/\epsilon})^{1/2}$	Shenai's FM(Q _{F1}) κσ _A	Shenai's FM(Q _{F2}) $\kappa \sigma_A E_c$	Baliga's FM $\epsilon \mu E_c^{3}$	Baliga's HFM μE_c^2
Si	1	1	1	1	1	1
GaAs	7.1	0.45	5.2	6.9	15.6	10.8
c-GaN	685	$ 1.5 \\ 1.6 \\ 1.6 \\ 4.68 \\ 4.61 $	20	67	23	8.2
h-GaN	760		560	6220	650	77.8
3C-SiC	65		100	400	33.4	10.3
6H-SiC	260		330	2670	110	16.9
4H-SiC	180		390	2580	130	22.9
AlN	5120	21	52890	2059000	31700	1100
Diamond	2540	32.1	54860	1024000	4110	470

 σA =Shenai's FM(QF3)=_ $\epsilon \mu Ec3$ T.P. Cho, Materials Science Forum, Vols. 338-342 (2000) 1155.

	SH-HEMT on GaAs	DH-HEMT on GaAs	P-HEMT on InP	GaN-HEMT on sapphire
μ (cm ² /Vs)	$5000 \sim 6500$	$5000 \sim 6500$	$9500 \sim 12000$	$800 \sim 1700$
$n_{s} (10^{12}/cm^{3})$	$1.5 \sim 2.5$	$2.0 \sim 3.0$	$3.0 \sim 4.0$	$15 \sim 20$
$n_{s} \mu (10^{15}/Vs)$	$7 \sim 16$	$10 \sim 20$	$30 \sim 50$	$12 \sim 34$
$R_{ch}(\Omega/sq)$	$400 \sim 600$	$300 \sim 500$	$150 \sim 250$	$200 \sim 520$

By H. Kawai

Saturation Drift Velocity & Breakdown Voltage vs. Electric Field

Properties of Wide Bandgap Semiconductor Devices

Structures of High-Power Electron Device

High-power operation of HF device

 $P_{out}=10W/mm$ and $P_{total}=200W$ are obtained.

Beijing University Seminar Beijing, China, 2007.11.22

Operation limit of High-Frequency Devices

Operation Voltage and Power Density of High-Power HF devices

Beijing University Seminar Beijing, China, 2007.11.22

National Institute of Advanced Industrial Science and Technology.

Comparison of Depletion Layer Expansion and Electric Field in a Switching Device

Performance Indices of Power Switching Devices

Beijing University Seminar Beijing, China, 2007.11.22

R&D Status of Low-Loss Swtching Devices --- Fabrication Trials and Simulation ---

High blocking voltage HFET

S. Yagi et al.: Solid-State Electron. 50 (2006) 1057.

M. Inada et al. : *Proc. Int. Symp.* Power Semicond. Devices & ICs, Naples, 2006, p.121.

R&D trend of Current Capacity on SiC Devices

National Institute of Advanced Industrial Science and Technology.

Mitsubishi Electric (2006.1.24)

- 1. Module by 1200V, 10A MOSFETs (On-resistance :10m Ω cm²)
- 2. Inverter operation of a 3.7kW motor (SiC-MOSFET+SiC-SBD)
- 3. 54% reduction of a inveter loss (vs. Si-IGBT inverter)

	24 1 1		BEILDIG MODI HI COLO DED WHIT			
	半導体デバイス	耐圧	電流値	オン抵抗率※5	オン電圧※5	
	SiC-MOSFET	1200V	10A 級	$10 \text{m} \Omega \text{cm}^2$	_	
	SiC-SBD	1200V	10A 級	_	1.2V	
1	the second se	and some a sector back a dealer of a				

表1 パワーモジュール化を行った SiC-MOSFET と SiC-SBD の特性

※5:オン抵抗率、オン電圧は電流密度 100A/cm²における値

Beijing University Seminar Beijing, China, 2007.11.22

Recent Results of Device/Inverter R&D (2)

Kansai Electric Power & Cree Inc. (2006.1.25)

- 4.5 kV, 100 A SiC Commutated Gate Turn-off Thyristor (SiCGT) 8x8mm²
- 2. 110kVA 3-phase inverter (SiC-MOSFET+SiC-PiN D) without snubber circuit, operation at 300°C
- 3. Reduction of inverter loss by more than 50% (vs. Si-IGBT inverter)

From Crystal to Application System

Beijing University Seminar Beijing, China, 2007.11.22

Problems in Widegap Semiconductor Device Technology

Enlargement of SiC Wafer Size and Defects

Beijing University Seminar Beijing, China, 2007.11.22

Comparison of SiC Single Crystal Wafer

Beijing University Seminar Beijing, China, 2007.11.22

Al Content and Sheet Resistance of an AlGaN/GaN Heterostructure Wafer

Surface morphology of high Al-content AlGaN epitaxial layer

Al-content(equivalent) dependnce of Sheet resistance

Normally-off operation of GaN switching devices

Existing Gate drive circuit,

incompatibility of control power supply, gate signal

Care for Power supply circuit (Safety)

Confirmation of necessity ?

Trials by various approach

- •Recess gate structure
- Introduction of fixed charge
- •MOS structure
- •Utilization of non-polar surface
- •pn-junction gate
- •GaN Cap layer
- •Asymmetry AlGaN/GaN/AlGaN channel

Examples of Normally-off operation

Beijing University Seminar Beijing, China, 2007.11.22

There remain many unknown factors in WGS Physics

- micropipe
- dislocation (SD, ED, BPD etc.)
- Grain boundary, oxide interface
- Channel mobility
- Blocking voltage, current leakage
- Reliability

(correlation between wafer characteristics and device performance)

Reflection X-ray topograph image for a SiC SBD

threading screw : 39 (3900 cm⁻²), threading edge : 126 (12600 cm⁻²), basal plane : 20 (200 cm⁻²)

Characterization Techniques/Tools

Required specification for voltage and current, relation with the density of device killer defects

- **High-power electron devices are key components** for wireless communication and power electronics, which are necessary for the sustainable development in the 21th century.
- WGS are promising for high-power application, due to their superior material characteristics.
- Owing to the recent R&D, high-power electron device performance by WGS has been well demonstrated, which much surpass those of conventional devices
- There **still remain technical issues to be solved**, for actual system application.