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We find that the quantum-classical correspondence in integrable systems is characterized by two time scales. One is the Ehrenfest
time below which the system is classical; the other is the quantum revival time beyond which the system is fully quantum. In
between, the quantum system can be well approximated by classical ensemble distribution in phase space. These results can
be summarized in a diagram which we call Ehrenfest diagram. We derive an analytical expression for Ehrenfest time, which is
proportional to ~−1/2. According to our formula, the Ehrenfest time for the solar-earth system is about 1026 times of the age of
the solar system. We also find an analytical expression for the quantum revival time, which is proportional to ~−1. Both time
scales involve ω(I), the classical frequency as a function of classical action. Our results are numerically illustrated with two
simple integrable models. In addition, we show that similar results exist for Bose gases, where 1/N serves as an effective Planck
constant.
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1 Introduction

A quantum system is expected to become classical in the limit
~ → 0. However, how this exactly happens is highly non-
trivial and has been studied intensively in the field of quantum
chaos [1]. The issue of quantum-classical correspondence
was noticed as early as in 1927 by Ehrenfest. For a particle
with mass m moving in a potential V(x), Ehrenfest demon-
strated that the expectation values of the particle’s position
and momentum follow Newton-like equations [2]

d
dt
⟨x̂⟩ = ⟨ p̂⟩

m
, (1)

*Corresponding author (email: wubiao@pku.edu.cn)

d
dt
⟨p̂⟩ = −

⟨
dV(x̂)

dx̂

⟩
, (2)

where ⟨·⟩ is the expectation value of the operator. These two
equations are now known as Ehrenfest theorem, which offers
a hint on how quantum and classical dynamics may be re-
lated. In particular, when the wave function is narrow enough
and the potential V(x) varies gradually in space, we approx-
imately have ⟨ dV(x̂)

dx̂ ⟩ ≈
dV(⟨x̂⟩)

d⟨x̂⟩ . This means that the evolu-
tion of expectation values of position and momentum would
follow exactly the Newton’s equation of motion. However,
an initially well-localized wave packet will spread, and the
expectation values of its position and momentum will even-
tually deviate from the classical dynamics when the width
of the wave packet is no longer small. Ehrenfest time τ~ is
the time scale when such a quantum-classical correspondence
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breaks down [3-12]. Quantum-classical correspondence was
also studied in other aspects, such as the correspondence be-
tween closed classical orbits and quantum spectra [13-16].

In this work we study systematically the quantum-classical
correspondence in integrable systems. We find that the
quantum-classical correspondence is characterized by two
time scales, Ehrenfest time τ~ and quantum revival time
Tr [17-19], as shown in Figure 1. According to this figure, for
a fixed Planck constant, the wave packet dynamics is almost
classical when the evolution time is shorter than the Ehrenfest
time τ~; when the evolution time is longer than Tr, quantum
revival occurs and the wave packet dynamics can no longer be
approximated by semiclassical approaches. Between Ehren-
fest time τ~ and quantum revival time Tr, the quantum dy-
namics can be well approximated by classical ensemble dis-
tribution in phase space. Furthermore, we are able to derive
analytical expressions for both Ehrenfest time τ~ and quan-
tum revival time Tr, both of which are intimately related to
ω(I), the classical frequency as a function of classical action.
We find that τ~ ∝ ~−1/2 and Tr ∝ ~−1.

For many specific systems, we find that the Ehrenfest time
has a simple form τ~ = cTc(I/~)1/2, where Tc is the period
of a classical motion, I is the corresponding action, and c is a
dimensionless constant of order one. Our results are applied
to many concrete systems. Generally, for systems which we
usually regard as quantum systems, their Ehrenfest times are
short; for systems which we usually consider as classical sys-
tems, their Ehrenfest times are long. For example, for a hy-
drogen atom in the ground state, we have τ~ = 0.5Tc; for
the earth orbiting around the sun, we have τ~ = 2.3 × 1036Tc

while the age of the solar system is only 0.5 × 109Tc. There-
fore, Ehrenfest time may be used as an indicator whether we
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Figure 1 Ehrenfest diagram for the quantum-classical correspondence in
integrable systems. Two time scales, Ehrenfest time and quantum revival
time, are plotted as functions 1/~ϵ . These two time scales mark up three re-
gions: quantum, classical ensemble, and classical. The lines are plotted for
the model in eq. (3) with (x0 = 0, p0 = 2) as the initial condition.

should treat a given system as quantum or classical.
In the end we consider an integrable system of Bose gas

for which its effective Planck constant is 1/N [20], where N
is the total number of the particle. When N is small, the Bose
gas is quantum and when N is large it is well approximated
by the mean-filed theory [21]. We also find two time scales,
the Ehrenfest time scales with N as N1/2 and the quantum re-
vival time scales linearly with N. As N can be changed in
an experiment, Bose gas offers a potential platform where the
scalings of Ehrenfest time and quantum revival time with the
Planck constant may be verified experimentally.

2 Ehrenfest time

Before we present our general results, it is illuminating to
look at concrete systems with numerical simulation.

2.1 numerical results

We consider the following one dimensional system

H =
p2

2m
+ V(x), (3)

where m is the mass of the particle and V(x) = mω2
0x2 +

m2ω3
0x4/~. To numerically investigate how Ehrenfest time

scales with the Planck constant, we set the Planck constant in
the Schrödinger equation as ~̃ = ~ϵ~, where the dimension-
less constant ~ϵ is varied. In our numerical calculation, we
use
√
~/(mω0) as unit of length,

√
~mω0 as unit of momen-

tum, ~ω0 as unit of energy, and 1/ω0 as unit of time. In this
unit system, V(x) = x2 + x4.

We compare numerically the quantum and classical dy-
namics of this system. For a given classical initial condition
x0, p0, we construct the following Gaussian wave packet as
the initial state for the quantum dynamics,

ψ(x) =
1

(2πσ2
x)1/4 exp

{
− (x − x0)2

4σ2
x
+

ip0(x − x0)
~ϵ

}
, (4)

where σx =
√
~ϵ/2. The quantum expectation value ⟨x(t)⟩

and the classical trajectory xc(t) are compared in Figure 2(a).
As expected, they match each other for an initial short period
of time and then start to deviate. We find that the difference
|⟨x(t)⟩− xc(t)| oscillates and its peaks can be approximated by
function y = a(1− e−bt2

), as shown in the inset of Figure 2(b).
The Ehrenfest time is extracted from these numerical results
as τ~ =

√
1/b. When ~ϵ is varied, τ~ varies. Their relation is

shown in Figure 2(b), which clearly shows τ~ ∝ ~−1/2.
In addition, we follow ref. [22] and compare the quantum

dynamics to its corresponding classical ensemble evolution.
We use the Wigner function of the Gaussian wave packet in
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Figure 2 (Color online) (a) The time evolutions of a classical particle xc(t), its corresponding quantum expectation value ⟨x(t)⟩, and the corresponding
classical ensemble average x̄c(t). x0 = 1, p0 = 0, and ~ϵ = 0.03. (b) Relationship between τ~ and 1/~ϵ , which can be fit by function y = 0.5x + 0.42. The inset
is a typical fit curve of the evolution of the peaks of the difference between classical value and quantum expectation value. The unit of length is

√
~/(mω0) and

the unit of time is 1/ω0.

eq. (4) as the initial distribution for a classical ensemble

ρc(x, p) =
1
π~ϵ

exp
− (x − x0)2

2σ2
x
− (p − p0)2

2σ2
p

 , (5)

whereσx = σp =
√
~ϵ/2. We use x̄c as the classical ensemble

average of x. The agreement between the quantum expecta-
tion value ⟨x(t)⟩ and x̄c(t) is almost perfect for a short period
of time as shown in Figure 2(a). Such an excellent agree-
ment goes beyond just the averaged value and exists even in
phase space. To plot the quantum dynamics in phase space,
we use the method in refs. [23, 24] to project wave function
unitarily onto quantum phase space. Roughly, the classical
phase space is divided into Planck cells and each Planck cell
is assigned a Wannier function; these Wannier functions form
a complete orthonormal basis which is used for the unitary
projection. The results are plotted in Figure 3, where we see
that the agreement is excellent within Ehrenfest time and it
begins to break only after t = 26.

To illustrate that our results hold for higher dimensions, we
consider an integrable model of two degrees of freedom. It is
a model constructed from three-site Toda lattice [25] with the
following Hamiltonian

H =
p2

1

m
+

p2
2

m
+

p1 p2

m
+ µ
[
e−x1/a + e−(x2−x1)/a + ex2/a] . (6)

Similarly, we set the Planck constant in the Schrödinger equa-
tion as ~̃ = ~ϵ~, where the dimensionless constant ~ϵ can
be varied. In our numerical calculation, we use a as unit of
length,

√
mµ as unit of momentum, µ as unit of energy, and

~/µ as unit of time. In this unit system, H = p2
1 + p2

2 + p1 p2 +

e−x1+e−(x2−x1)+ex2 . Two independent conserved quantities are
H and F = −(p2

1 p2+p2
2 p1)−p2e−x1+(p1+p2)e−(x2−x1)−p1ex2 .
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Figure 3 (Color online) Quantum dynamics (upper row) and classi-
cal ensemble dynamics (lower row) in phase space. The classical ensem-
ble distribution is coarse-grained to Planck cells. For this case, τ~ ≈ 26.
(x0 = 0, p0 = 2) and ~ϵ = 0.03. The unit of length is

√
~/(mω0), the unit of

time 1/ω0, and the unit of momentum
√
~mω0.

The computation procedure is similar to the one dimen-
sional case. To determine Ehrenfest time numerically, we use
relative difference |x2c(t) − ⟨x2(t)⟩|/x2c(t) as a criterion. To
avoid zero points of x2c(t), we choose time points when x2c(t)
is large. As showed in Figure 4, the Ehrenfest time in the
two dimensional system also scales with ~ as τ~ ∝ ~−1/2.

2.2 General analysis

The numerical results above also indicate that a single-
particle classical trajectory deviates from its corresponding
classical ensemble dynamics (see Figure 2(a), Figure 4(a) and
(b)), which was already noticed in ref. [22]. This fact, to-
gether with the perfect agreement between quantum dynam-
ics and classical ensemble dynamics within Ehrenfest time,
implies that Ehrenfest time τ~ is solely caused by the width
of a quantum wave packet that has a lower limit set by the
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Figure 4 (Color online) Numerical results for the integrable model of two degrees of freedom. (a), (b) The time evolutions of a classical particle
position x2c(t), its corresponding quantum expectation value ⟨x2(t)⟩, and the corresponding classical ensemble average x̄2c(t). The initial condition is
x1 = 0.7, x2 = 1.2, p1 = 0.4, p2 = 0.6. ~ϵ = 0.03. (c) Relationship between τ~ and 1/~ϵ , which can be fit by function y = 0.50x + 2.39. The inset is a
typical fit curve for the evolution of relative difference between classical value and quantum expectation value |x2c(t) − ⟨x2(t)⟩|/x2c(t). The unit of length is a
and the unit of time is ~/µ.

uncertainty relation. We exploit it to derive an analytical ex-
pression for Ehrenfest time.

We consider a classical ensemble distribution that satis-
fies the uncertainty relation, such as the one in eq. (5). The
evolution of this classical ensemble is governed by Liouville
equation, which is totally classical and irrelevant of ~. The
only factor related to ~ is the fluctuations of position and mo-
mentum in this ensemble distribution which are limited by
the uncertainty principle.

We choose three points A, B, and C in the phase space
such that they initially differ from each other by δp in mo-
mentum and δx in position (see Figure 5). In particular, B is
the averaged point of A and C. As long as the system is not a

Figure 5 A typical phase space for one dimensional integrable system.
Closed curves are energy contours. In general, the oscillation frequencies on
different curves are different. So, the three points A, B, and C , initially close
to each other, will disperse over time due to different frequencies.

harmonic oscillator, these three points have different angular
velocities. As time goes by, the average of A and C will differ
significantly from B and the correspondence between classi-
cal ensemble and classical single particle will break down.
When we choose δx · δp ∼ ~, such a breakdown time is just
Ehrenfest time τ~.

We define τ~ as the time when the angular difference of A
and C is 2π. We thus have

τ~ =
2π

|ωA − ωC |
, (7)

≈ 2π
|ω′(I)| · (|∂I/∂x| · δx + |∂I/∂p| · δp)

, (8)

where ω is the angular velocity and I is the action. Note that
all these quantities ∂I/∂p, ∂I/∂x and ω′(I) are classical and
independent of ~. The Planck constant comes in only through
the uncertainty relation that requires that δx ∼ δp ∝ ~1/2. So,
we have

τ~ ∝ ~−1/2 . (9)

There is no need to worry about the possibilityω′(I) = 0 in
eq. (8) as it is the result of truncation of the Taylor expansion
of |ωA − ωC| to the first order. If ω′(I) = 0, one just needs to
expand it further to the second order. In this case, we would
have τ~ ∝ ~−1. One could continue this expansion until some
order becomes non-zero. If all orders of derivative of ω(I)
vanish, the system must be a harmonic oscillator for which
τ~ is indeed infinite.

For n-dimensional integrable system, there exist n pairs of
independent action-angle variables and thus n angular veloci-
ties, each of which gives a Ehrenfest time according to eq. (8),

τ~i =
2π

|∂ωi/∂I j| · (|∂I j/∂xk | · δxk + |∂I j/∂pk | · δpk)
, (10)
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where i, j, k = 1, 2, ..., n, and repeated indices imply summa-
tion. In phase space, the spread of a wave packet in any direc-
tion will cause the break down of the quantum-classical cor-
respondence, so the shortest of them will be Ehrenfest time
for the n-dimensional integrable system, that is

τ~ = min{τ~i} , (i = 1, 2, · · · , n). (11)

For chaotic systems, it is well accepted that Ehrenfest time
τ~ =

c
γ

ln A
~

[3-9], where γ is the Lyapunov index of the
chaotic system, A is a typical action, and c is a dimension-
less constant of order one.

However, there is some confusion over Ehrenfest time in
integrable systems. Although it is generally believed that for
integrable systems Ehrenfest time scales with the Planck con-
stant as τ~ ∝ ~−α [26], it is not clear in literature what α is.
It was indicated in ref. [11] that α = 1 but no detailed ex-
planation was given. It is shown in some specific cases that
α = 1/2 [26, 27]. Berry [7] studied a similar time scale with
Wigner function and found that α = 2/3. Combescure and
Robert [5] had a general result for integrable systems. They
proved that when t < C~−1/2, where C is a constant, the quan-
tum evolution of an initially coherent state remains coherent
while its center evolves in time according to the classical dy-
namics. Their result sets a lower bound for Ehrenfest time
but does not say how Ehrenfest time should scale with ~. In
fact, any α ≥ 1/2 would satisfy their lower bound.

Our work clarifies the issue and shows analytically
α = 1/2 for general integrable systems. In addition, it is
clear from our derivation that Ehrenfest time is intrinsic to
the system in the sense that it can be understood without re-
ferring to a localized initial wave packet as it is the time scale
that a classical ensemble distribution in phase space develops
structures finer than the Planck cell.

2.3 Examples

We now apply the above result to a couple of examples to
get a sense how big or small the Ehrenfest time can become
in typical macroscopic and microscopic situations. The first
example is a particle of mass m in a one dimensional box of
length a. Through some simple calculations we have

τ~ = Tc

√
2I
~
, (12)

where I = pa/π is the action and Tc = 2am/p is the classi-
cal period with p being the momentum of the particle. Here
we consider two typical scenarios, one macroscopic and one
microscopic. Imagine that a macroscopic ball moves in a box
with m = 1 g, a = 1 m, v = 1 m/s. The Ehrenfest time

for this system is then τ~ = 2.4 × 1015Tc. Naturally, clas-
sical mechanics is enough to describe such a system. For
the microscopic scenario, we consider a ultracold 87Rb atom
moving in a optical well [28], where m = 1.5 × 10−25 kg,
v = 10−3 m/s (estimated under condition T = 10−8 K), and
a = 10−7 m (roughly the wavelength of light). The Ehrenfest
time for this case is τ~ = 0.8Tc. So ultracold atoms must be
described by quantum mechanics. This example shows that
Ehrenfest time is a good indicator whether a system should
be regarded as quantum or classical.

The second example is a system with the inverse square
law of force, whose Hamiltonian is

H =
p2

r

2m
+

L2

2mr2 −
k
r
, (13)

where m is the mass of the object, r is the distance to the
center, pr is the radial momentum, and L is the angular mo-
mentum. With canonical transformation, we have

H = −mk2

2
1

(I + L)2 , (14)

where I is the action variable of the system other than L. To
simplify the calculations, we choose a special initial con-
dition r = L2

mk , and the variances of the wave packet are
δr =

√
~/(2mω), δpr =

√
mω~/2, δθ = 1

r

√
~/(2mω), and

δL = r
√

mω~/2.
With some simple calculations we have

τ~ =

√
2

3
Tc√

~[(I+L)2−L2]
L2(I+L) + L

I+L

√
~
L

. (15)

For the Sun-Earth system, as the motion is approximately
circular motion, we have I ≈ 0 and L = 2.7 × 1039J · s. So,
we have τ~ = 2.3 × 1036 years while the age of the solar sys-
tem is just 5 × 109 years. For a hydrogen atom in its ground
state, as L = ~, we have τ~ = 0.5Tc. This is clearly consistent
with our daily experience that we do not need to worry about
the quantum effects in the orbits of the solar planets while we
have to describe hydrogen atom with quantum mechanics.

3 Quantum revival time

Ehrenfest time gives us the time scale when the quantum
dynamics of a single particle deviates from its classical tra-
jectory. However, as shown in Figure 2 and 4, if one com-
pares the dynamics of a quantum wave packet to an ensemble
of classical orbits, the quantum-classical correspondence can
last much longer. This phenomenon of course has been no-
ticed a long time ago [22]. In this section, we investigate
how long the quantum-classical correspondence can last in
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this sense. We find that for integrable systems such a time
scale is set by quantum revival [17-19] and scales with the
Planck constant as ~−1.

3.1 Numerical results

We further study numerically the quantum dynamic and its
corresponding classical ensemble dynamics for much longer
times. They are compared in term of the averaged position
(see Figure 6) and also in phase space (see Figure 7). If one
is only interested in the dynamics of the wave packet cen-
ter, the quantum and classical ensemble results match each
other very well for a very long time, up to t > 300 according
to Figure 6. After that, around t ≈ 430, while the classical
average x̄c(t) remains around zero, the quantum expectation
⟨x(t)⟩ almost fully recovers its original value, which is known
as quantum revival. This quantum revival occurs again when
the evolution time is doubled.

However, if one is interested in more dynamical details,
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Figure 7 (Color online) Quantum dynamics (upper row) and classical
ensemble dynamics (lower row) in phase space. The classical ensemble
distribution is coarse-grained to Planck cells. For this case, Tr ≈ 864
(x0 = 0, p0 = 2) and ~ϵ = 0.03. The unit of length is

√
~/(mω0), the

unit of time is 1/ω0, and the unit of momentum is
√
~mω0.

the time scale of agreement is shortened by a few fractions.
According to Figure 7, after t = τ~ ≈ 26, both are no longer
localized. However, the quantum distribution always has
more structures while the classical ensemble distribution is
rather uniformly distributed within the energy shell. In partic-
ular, at certain times, one observes that the quantum distribu-
tion will cluster around a few centers, a phenomenon known
as fractional quantum revival [17]. At t = 432, which is half
of the quantum revival time, we see that the quantum distri-
bution becomes localized again.

3.2 Analytical results

The numerical results above show that quantum dynamics
and its corresponding classical ensemble dynamics begin to
deviate from each other significantly when quantum revival
occurs. In this subsection, we derive an analytic formula
for quantum revival time. We follow the method in ref. [17]
but with a significant modification by introducing action vari-
ables. For a general one dimensional integral system, its clas-
sical Hamiltonian can always be written as H(I), where I is
the action of the system. As a result, its classical energy is
also a function of the action E(I) and so is the classical fre-
quency ω(I) = ∂E(I)/∂I [29]. We expand the quantum wave
packet in terms of the system’s energy eigenstates and its dy-
namics is then given by

ψ(t) =
∑

n

cne−iEnt/~ϕn(x) , (16)

where ϕn(x) is the nth eigenstate and En is its corresponding
energy eigenvalue. The coefficients cn’s are determined by
the initial condition. We assume that |cm|2 is the largest and
expand the eigenvalue around Em as follows:

En = Em + ω(Im)(In − Im) +
ω′(Im)

2
(In − Im)2 + ..., (17)

where In is the action corresponding to En via E(I). Accord-
ing to the Bohr-Sommerfeld quantization rule [30], we have

In − Im = (n − m)~ . (18)

So, the quantum phases can be written as:

exp [−i(En − Em)t/~]

= exp
[
−2πi(n − m)

t
Tc
− 2πi(n − m)2 t

Tr
+ ...

]
, (19)

where Tc = 2π/ω(Im) and

Tr =
4π

ω′(Im)~
. (20)

As Tr contains ~ in its denominator, it is clear that Tr ≫ Tc.
With this in mind, we can envision from eq. (19) how the
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quantum wave packet will evolve in time. For an initial short
interval of time, the wave packet will oscillate with period
Tc but with a decaying amplitude due to the second-order
and other higher order terms. When the evolution time ap-
proaches Tr, the second-order terms become multiples of 2π
and, as a result, the wave packet recovers most of its original
shape. How much it can recover depends on the third and
higher order terms and other factors. Before Tr, there can be
fractional quantum revivals that occur at t = pTr/q (p, q are
positive integers); they are characterized by a superposition
of several localized wave packets [17]. This is exactly what
we have observed in Figure 7.

From the above discussion, we find that the quantum re-
vival time Tr scales with the Planck constant as Tr ∝ 1

~
.

For the two examples mentioned in sect. 2.3, according to
eq. (20), we have

Tr1 = Tc
2I
~
, (21)

and

Tr2 =
2
3

Tc
I + L
~

, (22)

respectively.
We note that the Bohr-Sommerfeld quantization rule is

only an approximation; eq. (18) should be corrected to In −
Im = (n − m)~ + δe. For the above analysis to be correct, the
condition ω(Im)δe ≪ ω′(Im)

2 (n − m)2~2 should be satisfied. δe

also affects how much the quantum wave packet can recover
its original shape at Tr.

4 Bose gases

It is well known that the relationship between quantum and
mean field descriptions of Bose gases is essentially quantum-
classical correspondence [19-21] with 1/N (N is the total
number of bosons) serving as effective Planck constant. Our
results above can be straightforwardly applied to any system
of Bose gas which is integrable as it was done for the chaotic
Bose system in ref. [21]. We illustrate this with a two-site
Bose-Hubbard model as an example, whose Hamiltonian is

Ĥ = − ν
2

(â†b̂ + âb̂†) +
c

2N
(â†â†ââ + b̂†b̂†b̂b̂), (23)

where with â†(â) and b̂†(b̂) the creation (annihilation) oper-
ators in well a and b, c is the strength of interaction and ν

is the tunneling parameter. In our numerical calculation, we
use ν as unit of energy, ~/ν as unit of time. When the particle
number N is large, this system can be well approximated by
the following mean field model

Hmf = −
ν

2
(a∗b + ab∗) +

c
2

(|a|4 + |b|4) . (24)

Owing to the particle number conservation, |a|2+ |b|2 = 1, and
the overall phase is trivial, we can introduce a pair of conju-
gate variables s and θ, where s = |b|2, θ = θb − θa with θb and
θa being the phases of complex numbers a and b. The mean
field model is clearly a classical one dimensional integrable
system.

In the above discussion of quantum-classical correspon-
dence of a single particle, a point in the classical phase space
corresponds to a Gaussian wave packet of minimal spread.
For this Bose system, a mean field state a = α, b = β corre-
sponds to a quantum coherent state |α, β⟩

|α, β⟩ = 1
√

N!
(αa† + βb†)N |0⟩ , (25)

where |0⟩ is the vacuum state.
However, we need some effort to construct the correspond-

ing mean field ensemble distribution ρ(s, θ). We expand the
coherent state |α, β⟩ with Fock states |n,N −n⟩, where n is the
particle number at site a,

|α, β⟩ =
∑

s

φN(s)|N − Ns,Ns⟩ , (26)

where

φN(s) =

√
N!

Ns!(N − Ns)!
αN−NsβNs , (27)

and s ranges over 0/N, 1/N, ...,N/N. |φN(s)|2 can be regarded
as a distribution of s. For this distribution, the average of s is
s̄ = |β|2 and its variance is

∆s =
|β|
√

(1 − |β|2)
√

N
. (28)

As θ is the conjugate of s, its distribution can be obtained
with a Fourier transform

ϕN(θ) =
1

√
N + 1

∑
s

φN(s)e−iNsθ, (29)

where θ takes the following discrete values: 2π 1
N+1 ,

2π 2
N+1 , ..., 2π

N+1
N+1 . Numerical results show that

θ̄ ≈ θβ − θα , ∆θ ≈ 1

2
√

N|β|
√

(1 − |β|2)
. (30)

So, ∆θ and ∆s satisfy the uncertainty relation: ∆θ∆s ≈ 1
2N .

At the large N limit, N → +∞, both |φN(s)|2 and |ϕN(θ)|2
will approach Gaussian distribution. If we denote these
two Gaussian distributions as g1(s) and g2(θ), respectively,
the mean-field ensemble distribution can be constructed as
ρ(s, θ) = g1(s)g2(θ). The three different dynamics, mean-
field, mean-field ensemble, and quantum, are compared in
Figure 8. We find a very similar pattern as we found in sect. 2
and sect. 3.
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Figure 8 (Color online) (a) The time evolution of the averaged probability of the system in state b according to three different dynamics: quantum, mean-field,
and mean field ensemble. (b) Ehrenfest time as a function of number of particles N, which can be fitted by y = 0.48x + 1. The inset is a typical fit curve of the
evolution of the peaks of the difference between averaged probability in state b according to mean field and quantum dynamics. (c) The evolution of difference
between quantum expectation value and mean field ensemble average of occupation probability at state b. N = 200, c/ν = 2. The unit of time is ~/ν.

For quantum revival, we would need the Bohr-Sommerfeld
quantization rule. How to implement this rule in the mean
field theory of a Bose gas is discussed in refs. [31, 32].

In conclusion, the breakdown of correspondence between
quantum and mean field descriptions occurs at time τ~ ∝
N1/2, and the breakdown of correspondence between quan-
tum and mean field ensemble occurs at time Tr ∝ N. The
Planck constant ~ can not be changed experimentally, but the
total number of bosons N can. Therefore, the Bose gases can
be used to experimentally verify the results in this paper.

5 Discussion and conclusion

In summary, we have shown that for a generic integrable
system there exist two different time scales, Ehrenfest time
τ~ ∝ ~−1/2 and quantum revival time Tr ∝ ~−1. When they
are plotted in Figure 1, they mark up three different regions
in the space spanned by ~ and dynamical evolution time t.
In the classical region, a narrow quantum wave packet does
not spread much and its center follows the classical parti-
cle trajectory. In the classical ensemble region, a quantum

wave packet can be regarded as a classical ensemble distribu-
tion in phase space. In the quantum region, quantum revival
occurs and the quantum dynamics can not even be approxi-
mated with classical ensemble.

We call Figure 1 Ehrenfest diagram for two reasons.
The first is to honor Ehrenfest for his pioneering work on
quantum-classical correspondence [2]. The second and more
important reason is that we expect the prominent feature,
three different regions marked up by two different time scales,
in Figure 1 to be generic. Even for chaotic systems, this fea-
ture is expected to persist; the difference is that the Ehrenfest
time becomes logarithmic and the quantum revival time will
be replaced by other quantum times that scale with ~ differ-
ently. For example, for quantum kicked rotor, the second time
is the time scale for dynamical localization or quantum res-
onance and it scales as ~−2 [33]. We may call this second
time scale quantum time. We note that this quantum time in
our integrable systems is not Heisenberg time: as indicated
in eq. (19), the quantum revival comes from the second-order
terms in the eigen-energy expansion.

It would be very interesting to see how this kind of Ehren-
fest diagram evolves when a system changes from integrable
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to chaotic. It is not clear how Ehrenfest time changes from
square root to logarithmic. For a chaotic system, the quan-
tum revival time is likely exponentially long, so the quantum
time in the chaotic system must have a different cause. It is
not clear what the cause is or whether this cause may change
from system to system.
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