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Abstract
The monopole for the geometric curvature is studied for non-Hermitian 
systems. We find that the monopole contains not only the exceptional points 
but also branch cuts. As the mathematical choice of branch cut in the complex 
plane is rather arbitrary, the monopole changes with the branch-cut choice. 
Despite this branch-cut dependence, our monopole is invariant under the 
GL(l,C) gauge transformation that is inherent in non-Hermitian systems. 
Although our results are generic, they are presented in the context of a two-
mode non-Hermitian Dirac model. A corresponding two-mode Hermitian 
system is also discussed to illustrate the essential difference between 
monopoles in Hermitian systems and non-Hermitian systems.

Keywords: monopole, non-Hermitian, geometric phase, exceptional point, 
branch cut

(Some figures may appear in colour only in the online journal)

1. Introduction

The monopole is defined as the source of a vector field. In physics, it was first discussed in 
electrodynamics. The electric monopoles such as electron and proton exist everywhere in 
nature while the magnetic monopole dual to the electric one, first suggested by Poincaré [1] 
and calculated in the context of quantum mechanics by Dirac [2], has never been found to 
exist in nature. The field emanating from monopole becomes divergent or discontinuous at 
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the monopole but is continuous and described by the field flux off the monopole. The charge 
of a monopole is well-defined and can be obtained by integrating the field off the monopole.

Although the magnetic monopole is yet to be discovered, researchers have explored mono-
poles in the context of geometric phase in quantum system, where the Berry curvature resem-
bles the magnetic field and the energy degenerate point resembles the monopole [3, 4]. The 
Berry curvature can exert a Lorentz-like force (often called geometric force) on the electric-
neutral particle [4–6]. Despite their similarity, Berry curvature has a key difference from the 
real electromagnetic field: Berry curvature is in fact multi-valued in the parameter space with 
each value associated with a particular energy eigenstate of the Hamiltonian. In Hermitian 
systems, the eigenstates with different eigenenergies are well separated from each other. The 
monopoles of Berry curvature are defined as the degenerate points, which are the only places 
where different bands of eigenstates can switch smoothly into each other. In Hermitian sys-
tems, once the Hamiltonian is specified, its monopoles are uniquely determined.

There have been tremendous interests recently in the non-Hermitian systems both theor-
etically [7–21] and experimentally [22–38]. In non-Hermitian systems, it is known that one 
band of eigenstates can smoothly switch to another band without crossing any degeneracy 
points (or exceptional points as called in non-Hermitian systems) along a closed loop in the 
parameter space [39]. Mathematically, this is a Möbius loop. In this work we find that, as 
the result of this kind of the ‘Möbius’ structure, the monopoles in non-Hermitian systems 
not only contain exceptional points but also branch cuts. As is well known, branch cuts in 
the complex plane are not unique mathematically and can be chosen rather arbitrarily. As a 
result, the monopoles for a given non-Hermitian system are not uniquely determined by the 
Hamiltonian. This is in stark contrast with Hermitian systems. In this work, for simplicity, our 
results are presented with a two-mode non-Hermitian Dirac model, where the Chern number, 
the total charge of the monopole, and its relation to the choice of branch cuts is also discussed. 
For comparison, a two-mode Hermitian system is also studied.

2. Möbius loops of Hermitian systems

We consider a two-mode system, which is described by the following Hamiltonian

He(θ) = cos

(
θ

2

)[
cos

(
θ

2

)
σz + sin

(
θ

2

)
σx

]
,

 (1)
where 0 � θ � 2π  is related to a point in a three-parameter space as (see figure 1)

θ =




arccos

( √
x2+y2−r√

(
√

x2+y2−r)2+z2

)
if z � 0

2π − arccos

( √
x2+y2−r√

(
√

x2+y2−r)2+z2

)
if z < 0

. (2)

It is clear that θ = π is for all the points on the shaded disk in figure 1, which is mathemati-
cally specified by x2 + y2 � r2, z = 0.

The eigen-energies of He is E±(θ) = ± cos
(
θ
2

)
 and the corresponding eigenstates are

|ψ+(θ)〉 =
(
cos θ

4
sin θ

4

)
, |ψ−(θ)〉 =

(
− sin θ

4
cos θ

4

)
. (3)

As E±(π) = 0, the system is degenerate on the whole shaded disk (see figure 1). It is clear 
that the two energy bands E+(θ) and E−(θ) can switch to each other smoothly only at these 
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degenerate points. In other words, the disk is the monopole of He; this is in stark contrast with 
the usual case, where the monopole is a single point. Moreover, we notice that

|ψ+(θ + 2π)〉 = |ψ−(θ)〉. (4)

This interesting fact implies the existence of Möbius loops in our systems. Consider the lower-
left loop in figure 1. It is clear that if we start with a point corresponding to an angle θ and 
traverse along the loop, we will end up with angle θ ± 2π when we are back at the same point. 
This means that along this loop if we start with eigenstate |ψ+〉(θ) at a given point, we will 
end up with |ψ−〉(θ) when we are back at the same point. This is a Möbius loop. In fact, any 
loop that intersects with the monopole disk is a Möbius loop. Loops that do not intersect with 
the monopole disk are not Möbius loops. Note that in general we can set an arbitrary point 
along a Möbius loop where the two set of vectors on the loop switch to each other. Here it is 
convenient and natural to choose the degenerate points.

The corresponding physics is clear. Along a Möbius loop there is an energy degenerate 
point, where one can smoothly go from one energy E+(θ) to the other E−(θ) or vice versa. 
Along an ordinary loop, there is no energy degenerate point and one can only stay in one 
eigen-energy if the parameter changes slowly along the loop. In the next section, we will see 
that it is possible to have exact Möbius loops that do not contain energy degenerate points in 
non-Hermitian systems.

Figure 1. Illustration of the Möbius loop in the parameter space of a Hermitian system. 
The disk (shaded area with red circle) is the monopole where the system is degenerate. 
For a point P = (x, y, z) in the parameter space, its angle θ is defined in the unique plane 
perpendicular to the xy plane (yellow-shaded) and through the origin O = (0, 0, 0) and 
point P. In this way, the angle θ is still well-defined for points on the line x  =  y   =  0. Two 
typical loops are shown. The left loop passes through the monopole disk and is a Möbius 
loop, along which the eigenstate |ψ+〉 transits continuously to the other eigenstate |ψ−〉 
upon return. The top right is an ordinary loop, along which the eigenstate |ψ+〉 stays 
the same and does not change to |ψ−〉. The arrows are drawn schematically to show the 
directions of eigenstates in the Hilbert space.

Q Zhang and B Wu J. Phys. A: Math. Theor. 53 (2020) 065203



4

3. Möbius loop in non-Hermitian systems

For a non-Hermitian Hamiltonian H, the eigen-energies are in general complex. There are usu-
ally exceptional points (EPs) in the parameter space at which eigen-energies are degenerate. 
At EPs, the non-Hermitian Hamiltonian H is non-diagonalizable; off EPs, H is diagonalizable 
and admits a set of biorthonormal eigenvectors |ψj〉 and |φj〉 [40], satisfying,

H|ψn〉 = En|ψn〉, H†|φn〉 = E∗
n |φn〉, (5)

〈φm|ψn〉 = δmn,
∑

n

|ψn〉〈φn| = 1. (6)

The eigenstates |ψj〉 and |φ j〉 can be regarded as contravariant and covariant vectors in Hilbert 
space, respectively [41].

For simplicity and without loss of generality we consider a simple non-Hermitian 
Hamiltonian [42–53],

H = pxσx + pyσy + ( pz + is)σz. (7)

The parameter space here is spanned by p = ( px, py, pz). The real parameter s controls the 
non-Hermiticity of the system. When applied to lattice systems, p x, p y  and p z can be regarded 
as the Bloch momenta [51, 52].

The eigen-energies of H can be easily obtained

E1,2 = ±
√

p2 − s2 + 2ipzs. (8)

It is clear that E1 = E2 = 0 at the circle of radius s that is given by p2
x + p2

y = s2, pz = 0, and 
E1 �= E2 at other points in the parameter space. So, the EPs form a circle. It is worth noting 
that this continuous distribution of EP has been found in the PT -symmetric waveguide sys-
tem [54], where the third-order exceptional point (EP3, the three-fold degeneracy) forms iso-
lated point around which continuous lines composed by the second-order exceptional points 
(EP2, the two-fold degeneracy) are present. The continuous distribution of EP2 greatly affects 
the topological behavior of EP3 and can induce interesting physical properties. In the current 
two-mode system, apparently, only EP2 are present. The corresponding biorthonormal eigen-
states can be worked out, respectively, as (up to a GL(l,C) gauge) [41],

|ψ1〉 =




√
p2 − s2 + 2ipzs + is + pz

px + ipy


 (9)

|ψ2〉 =



−
√

p2 − s2 + 2ipzs + is + pz

px + ipy


 (10)

|φ1〉 =




1
2
√

p2−s2−2ipzs

√
p2−s2−2ipzs+is−pz

2( px−ipy)
√

p2−s2−2ipzs


 (11)
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|φ2〉 =



− 1

2(
√

p2−s2−2ipzs−is+pz)

1
2( px−ipy)


 . (12)

As the eigen-energies E1,2 are the square roots of a complex variable, there is a branch 
cut: when the parameters p x, p y , and p z change continuously along a loop that goes through 
the branch cut, E1 changes to E2 and E2 changes to E1. This is naturally a Möbius loop. The 
left loop as shown in figure 2 is such a Möbius loop. In fact, all the loops linked with the red 
circle, where the EPs are located, are Möbius loops. All the loops that are off the red circle 
are not Möbius loop; one example is shown in the top right corner of figure 2. As the function 
E1,2 = ±

√
p2 − s2 + 2ipzs also appears in the corresponding eigenstates, the eigenstates will 

also switch to each other at the branch cut along a Möbius loop.
However, there are crucial differences between Hermitian systems and non-Hermitian sys-

tems for Möbius loops. In the Hermitian case, the Möbius loop has to go through a degenerate 
point; in the non-Hermitian case, the Möbius loop only needs to link with the circle of excep-
tional points and there is no exceptional point on the Möbius loop. Moreover, in the Hermitian 
case, the two eigen-energies E± switch to each other at degenerate points, which are fixed 
once the Hamiltonian is given; in the non-Hermitian case, the two eigen-energies E± switch 
to each other at the branch cut, which is to be chosen arbitrarily even the Hamiltonian is given. 
The disk p2

x + p2
y � s2, pz = 0 is a natural choice of branch cut; however, as a well-known 

mathematical fact, we can choose other branch cuts. As a result, in the Hermitian system, the 
monopole consists of only degenerate points; in the non-Hermitian system, the monopole 
consists of exceptional points and branch cuts as we explain in detail next.

4. Monopoles in non-Hermitian Hamiltonians

In non-Hermitian systems, the Berry connection and Berry curvature for the j th eigenstate are 
given by [41, 55],

Aj = i〈φ j|∇|ψj〉; (13)

Bj = i〈∇φ j| × |∇ψj〉, (14)

where ∇ ≡ ∂
∂R with R  being the adiabatic parameters. The Berry connection Aj  for a non-

Hermitian eigenstate is up to a GL(l,C) gauge A′
j = Aj + i 1

f ∇f  upon the GL(l,C) gauge 
transformation of the biorthonormal eigenstate [41],

|ψ′
j 〉 = f |ψj〉, 〈φ

′j| = 1
f
〈φ j|, (15)

with |f | �= 1 and f ∈ GL(1,C). However, as in the case of Hermitian eigenstate, the Berry 
curvature is invariant upon the gauge transformation.

In our case of Hamiltonian (7), R  are px, py, pz  and the Berry curvature can be worked out 
as,

B1 = i〈∇φ1| × |∇ψ1〉

= − p
2(p2 − s2 + 2ipzs)3/2 − is

2(p2 − s2 + 2ipzs)3/2 p̂z,

B2 = i〈∇φ2| × |∇ψ2〉 = −B2

 

(16)
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where p ≡ ( px, py, pz), p̂z is the unit vector in p z direction and ∇ ≡ ∂
∂p. At s  =  0, the result 

reduces apparently to that for the standard spinor.
Before focusing on Hamiltonian (7), we present a general discussion on Berry curvature Bj. 

Let us calculate the divergence of the Berry curvature, i.e. ∇ · Bj . We introduce an auxiliary 
operator

F = −i
∑

n

|∇ψn〉〈φn| = i
∑

n

|ψn〉〈∇φn|, (17)

where the second equality is ensured by the completeness relation (6). We then have

|∇ψj〉 = iF|ψj〉
〈∇φ j| = −i〈φ j|F

∇× F = −i
∑

n

|∇ψn〉 × 〈∇φn|

= −i
∑

n

F|ψn〉 × 〈φn|F

= −iF × F.

 

(18)

Figure 2. Illustration of the Möbius loop in the parameter space of a non-Hermitian 
system. The red circle is the exceptional points, where the system is degenerate. Two 
typical loops are shown. The left loop is linked with the red circle and is a Möbius loop, 
along which the eigenstate |ψ1〉 transits continuously to the other eigenstate |ψ2〉 upon 
return. The top right is an ordinary loop, along which the eigenstate |ψ1〉 stays the same 
and does not change to |ψ2〉. The arrows are drawn schematically to show the directions 
of eigenstates in the Hilbert space.
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In terms of F the Berry curvature can be expressed as

Bj = i
∑

j′
〈φ j|F|ψj′〉 × 〈φ j′ |F|ψj〉 = i〈φj|F × F|ψj〉. (19)

Finally, by virtue of ∇× F in equation (18), we find

∇ · Bj

= i[〈∇φ j| · (F × F)|ψj〉+ 〈φ j|(F × F) · |∇ψj〉
+ 〈φ j|∇ · (F × F)|ψj〉]
= i[−i〈φ j|F · (F × F)|ψj〉+ i〈φ j|(F × F) · F|ψj〉
+ 〈φ j|(∇× F) · F|ψj〉 − 〈φ j|F · (∇× F)|ψj〉]
= 0.

 

(20)

This means that the divergence of the Berry curvature is always zero as long as the eigenstates 
are well-defined and smooth. We define monopoles as the points in the parameter space, where 
the divergence of the Berry curvature becomes non-zero. In the Hermitian systems, the diver-
gence of the Berry curvature is non-zero only at degenerate points, implying that in Hermitian 
systems degenerate points and monopoles are equivalent. The situation is very different for 
non-Hermitian systems, where besides exceptional points (the equivalence of degenerate 
points) the Berry curvature becomes discontinuous at branch cuts. As a result, the monopoles 
of non-Hermitian systems include both exceptional points and branch cuts.

Let us now focus on the simple case of Hamiltonian (7) and use it to illustrate the above 
point. At points away from the exceptional points, there are two well-defined eigenstates. To 
compute Berry curvature over the whole parameter space, we need to choose one of them 
and at the same time keep it change smoothly over the parameter space as far as possible. 
However, mathematically, this smoothness can not be achieved in the entire parameter space 
and has to be disrupted at a branch cut. As a result, the eigenstate becomes discontinuous at 
the branch cut and the divergence of Berry curvature becomes non-zero.

As is well known, the choice of branch cut for a complex function is rather arbitrary as 
long as it originates from a point where the complex function is ill-defined. For the complex 
function 

√
p2 − s2 + 2ipzs, the branch cut can be any surface whose edge is the circle of 

exceptional points. It includes surfaces that extend to infinity.
Three different choices of branch cuts are illustrated in figure 3. In the first row (a1) and 

(a2), the branch cut is the given by p2
x + p2

y < s2, pz = 0. For one of the two branches, we can 
choose eigenstates as |ψ1〉. Note that |ψ1〉 has different values when the parameter approaches 
the branch cut from the above or the below.

In figures 3(b1) and (b2), a different branch cut is shown. We denote the region enclosed 
by the green dome and the disk (p2

x + p2
y < s2, pz = 0) as Ω. In this case, we can choose |ψ2〉 

in Ω and |ψ1〉 elsewhere. Note that |ψ1〉 and |ψ2〉 are smoothly connected at the dashed line in 
figure 3(b2).

In figures 3(c1) and (c2), the branch cut (monopole) is chosen to be p2
x + p2

y > s2, pz = 0, 
i.e. the whole infinite px − py plane outside the circle of exceptional points. For this branch 
cut, we choose eigenstate |ψ1〉 for p z  <  0 and eigenstate |ψ2〉 for p z  >  0.

It is worthwhile to note that the branch cut is totally irrelevant of the GL(l,C) gauge trans-
formation as shown in equation  (15). To define the monopole, we must choose one of the 
two non-Hermitian eigenstates given by (9) and (11) on each point in parameter space. The 
branch cut is necessary for the selection of eigenstate for the Möbius distribution of eigenstate 
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in parameter space. On the contrary, the GL(l,C) gauge transformation is associated with 
the local self-contained simultaneous transformations of biorthonormal eigenstate and Berry 
connection, irrelevant of the selection of eigenstate and branch cut. As a result, the monopole 
composed of the exceptional points and branch cut is not affected by the GL(l,C) gauge 
transformation.

We consider the case (a) in figure  3, where the branch cut is a disk given by 
p2

x + p2
y < s2, pz = 0. It is clear that there is a discontinuity of the function 

√
p2 − s2 − 2ipzs 

between p z  >  0 and p z  <  0 as p2 < s2 , so the wavefunctions equations (9) and (11) and Berry 
curvatures (16) are discontinuous on the disk p2

x + p2
y < s2, pz = 0. We call this disk-like 

monopole the natural monopole corresponding to the natural separatrix given in equation (8) 
(see figure 3(a)).

From equation  (16), it can be found that the magnetic charge is distributed on the disk 
according to the density,

ρ1,2 = ± s
(s2 − p2)3/2 , for p < s, (21)

where p  is the distance to the center of the disk (the origin), +/−  is for the first/second eigen-
state. When p   =  s, equation  (21) cannot apply. Consequently, in order to derive the Chern 
number, one has to integrate the Berry curvature over a closed surface enclosing the disk-like 
monopole. The resulted Chern number is

C = ∓2π, (22)

where the sign  −/+  is for the first (+)/second (−) eigenstate. It is worth noting that the Chern 
number cannot be obtained by integrating the density given by (21), because equation (21) 
cannot apply as p   =  s (the edge of the disk).

For a finite monopole, the Chern number can be easily calculated by integrating the Berry 
curvature over a closed surface enclosing the monopole. For all the finite monopole the 
Chern’s number is the same as that of the natural one given in figure 3(a), i.e. C = ∓2π. The 

Figure 3. Branch cuts (monopoles) for the non-Hermitian Hamiltonian (7). ((a1), (b1), 
(c1)) are three different branch cuts. The blue circle consists of all the exceptional 
points. The cuts of ((a1), (b1), (c1)) by the ( px, pz) plane are shown in ((a2), (b2), (c2)), 
respectively, where we show how the eigenstates are chosen in different regions for one 
branch.
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reason for the same Chern number lies in that a finite branch cut can never influence the Berry 
curvature in the infinite (outside the region Ω).

The result is in sharp contrast to that in one dimensional SSH lattice model, where the 
Chern’s number is just the complex Berry phase accumulated along one dimensional Brillouin 
zone [56]. As the imaginary potential is present, the edge state acquires an imaginary energy 
gap for the PT -symmetric model, leading to the fact that the Berry phase is not quantized. 
In our model, however, the Chern’s number is considered as the charge contained by the con-
crete monopole and is calculated in three dimensional parameter space, which is a topological 
invariant and has nothing to do with edge state and imaginary energy gap.

Alternatively, one can make an infinite branch cut to label different eigenstates. There are 
infinite possibilities as for the finite branch cut. The simplest case is the plane infinite mono-
pole given by p2

x + p2
y � s2, pz = 0 as plotted in figures 3(c1) and (c2). For such an infinite 

branch cut, the calculation of Chern’s number becomes very different. We use the infinite 
branch cut p2

x + p2
y > s2, pz = 0 as plotted in figures 3(c1) and (c2). The density of charge 

over the infinite plane can be calculated as

ρ = ± is
( p2 − s2)3/2 , for p > s, (23)

where p  is the distance to the origin and  +/−  are for different choice of eigenstates. As equa-
tion (23) does not apply at p   =  s, we can not find the Chern number by integrating this charge 
density over the monopole. The Chern’s number of this infinite monopole can be derived by 
first considering the finite monopole Σ(r) composed of,

Σ(r) = {s2 � p2
x + p2

y � r2, pz = 0}
+ { p2

x + p2
y + p2

z = r2, pz � 0}.
 

(24)

According to the result that the Chern’s number of a finite monopole is constantly ∓2π (∓ for 
the two different choice of eigenstate, respectively), we have

C(Σ(r)) = ∓2π. (25)

It is then necessary to work out the charge of the semi-sphere,

S(r) = p2
x + p2

y + p2
z = r2, pz � 0. (26)

It can be done by integrating the corresponding Berry curvature given by (16) over S(r). As the 
Berry curvature is discontinuous on S(r), the charge is equal to the flux difference between in 
and out of the surface. For one of the branch cuts, we have

C(S(r)) =
∫

S(r)
[dS · B1 + dS′ · B2]

=

∫

S(r)
dS · [B1 − B2] ,

 (27)

where dS is the directed surface element on S(r) with the positive p z axis as the positive direc-
tion while dS′ = −dS is the directed surface element with the negative p z axis as the positive 
direction. The charge in the ring-belt-like region s2 � p2

x + p2
y � r2, pz = 0 is then

C(Σ(r))− C(S(r)) = −2π − C(S(r)). (28)

As r → ∞, the total charge in the semi-sphere tends to limr→∞ C(S(r)) = −2π and the Chern 
number of the infinite monopole p2

x + p2
y � s2, pz = 0 is thus

Q Zhang and B Wu J. Phys. A: Math. Theor. 53 (2020) 065203
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lim
r→∞

[C(Σ(r))− C(S(r))] = −2π − (−2π) = 0. (29)

For the alternative choice of eigenstate (choose eigenstate |ψ2〉 for p z  <  0 and eigenstate 
|ψ1〉 for p z  >  0.), we have

C(S(r)) =
∫

S(r)
dS · [B2 − B1] . (30)

The Chern number in this case is

lim
r→∞

[C(Σ(r))− C(S(r))] = 2π − 2π = 0.
 (31)

C = 0. (32)

The Chern number (together with the Berry curvature) is apparently irrelevant of the 
GL(l,C) gauge transformation, since the monopole itself is only determined by the branch cut.

5. Summary

To summarize, we have studied the monopole of non-Hermitian quantum systems and found 
that in non-Hermitian systems the monopoles contain not only exceptional points but also 
branch cuts. The monopole in non-Hermitian quantum mechanics thus depends on the choice 
of branch cuts, which is similar to the choice of gauges. Our results indicate that the Berry 
curvature is a more fundamental geometric quantity than the monopole and Chern number. 
Although we have so far only considered two-mode non-Hermitian systems, the results should 
be generic. For non-Hermitian systems with more than two modes, we expect that branch 
cuts become more complicated and the Möbius loop be replaced by loops where one can not 
get back to the original eigenstates even after traversing it twice. Since such non-Hermitian 
dynamics can be generically found or constructed in various physical systems, we expect that 
our study offer new insights into the dynamical and topological properties of non-Hermitian 
systems.
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