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Non-Hermitian quantum systems and their geometric phases
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We discuss the basic theoretical framework for non-Hermitian quantum systems with particular emphasis on
the diagonalizability of non-Hermitian Hamiltonians and their general linear GL(1,C) gauge freedom, which
are relevant to the adiabatic evolution of non-Hermitian quantum systems. We find that the adiabatic evolution
is possible only when the eigenenergies are real. The accompanying geometric phase is found to be generally
complex and associated with not only the phase of a wave function but also its amplitude. The condition for the
real geometric phase is laid out. Our results are illustrated with two examples of non-Hermitian PT -symmetric
systems, the two-dimensional non-Hermitian Dirac fermion model and bosonic Bogoliubov quasiparticles.
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I. INTRODUCTION

Nature is fundamentally described by the familiar quan-
tum mechanics, where Hamiltonians and observables are all
Hermitian operators. Nevertheless, due to an approximation
or interaction with the environment, non-Hermitian quantum
systems do arise, such as, for example, bosonic Bogoliubov
systems [1,2] and non-Hermitian PT -symmetric systems [3].
There has been tremendous interest recently in these non-
Hermitian systems both theoretically [3–17] and experimen-
tally [18–34].

There has also been a growing interest in the topological
properties of non-Hermitian Hamiltonians [35–46], where
the Chern number associated with the Berry curvature is
introduced to characterize the topology and the existence of
edge states. However, many basic issues are yet to be clari-
fied. For instance, in Hermitian systems, the Berry phase is
defined only when the adiabatic evolution is possible. It is not
clear what ensures the adiabatic evolution in non-Hermitian
systems.

In this article we investigate the adiabatic evolution and
its associated geometric phase in non-Hermitian systems.
To set up the theoretical framework for discussion, we first
describe the basic features of non-Hermitian systems. They
include the diagonalizability of a non-Hermitian Hamiltonian,
the general linear GL(1,C) gauge transformation, and the
nonorthonormal basis imposed on the Hilbert space by a non-
Hermitian Hamiltonian. Due to the last feature, one vector in
the Hilbert space has two different forms, covariant and con-
travariant. We find that the adiabatic evolution is possible only
when the eigenenergies are real. In general, non-Hermitian
systems have a gauge freedom of GL(1,C), and therefore
the geometric phase is generally complex and associated with
both the phase and amplitude of the eigenstate. However,
the geometric phase can be real when certain conditions are
satisfied. Our results are illustrated with two two-mode non-
Hermitian systems, the two-dimensional non-Hermitian Dirac
fermion model and bosonic Bogoliubov quasiparticles.

II. GENERAL FEATURES OF NON-HERMITIAN SYSTEMS

Non-Hermitian systems share many basic features with
the usual Hermitian systems. For example, their states live
in Hilbert spaces and all observables except energy are rep-
resented by Hermitian operators. At the same time, non-
Hermicity brings new features. We discuss the features that
are relevant to the adiabatic evolution and geometric phase.
The first is the diagonalizability of a non-Hermitian Hamil-
tonian, which is related to the exceptional points (EPs) in a
parameter space. The second is that the non-Hermitian Hamil-
tonian imposes two sets of nonorthonormal bases, which are
biorthonormal to each other, in the Hilbert space. We find
it very natural to use a covariant vector and contravariant
vector to deal with this issue. The third is the gauge freedom
in a non-Hermitian system. The norm is not conserved in a
non-Hermitian system, thus its gauge freedom is of GL(1,C)
in contrast to U (1) gauge freedom in a Hermitian system. As
a result, geometric phases are in general complex. We find
that conserved pseudonorms can be defined when eigenvalues
of the non-Hermitian Hamiltonian are real. Furthermore, ge-
ometric phases may become real when more conditions are
satisfied.

A. Diagonalizability of non-Hermitian Hamiltonians

We consider a general n-dimensional matrix M. Its di-
agonalizability is determined by the algebraic multiplicity
and geometric multiplicity of its eigenvalues. The eigenvalues
λ1, λ2, . . . , λd of matrix M are the roots of the secular
equation,

Det(M − λI )

= (λ1 − λ)η(λ1 )(λ2 − λ)η(λ2 ) · · · (λd − λ)η(λd ) = 0, (1)

where I is the identity matrix and Det(A) denotes the determi-
nant of A. In the polynomial, the exponent η(λ j ) is called the
algebraic multiplicity of the eigenvalue λ j [47]. The following
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relations apparently hold for the algebraic multiplicity,

1 � η(λ j ) � n,

d∑
i=1

η(λi) = n. (2)

Corresponding to each eigenvalue λ j , the maximum num-
ber of linearly independent eigenvectors is called the geo-
metric multiplicity ζ (λ j ) [47]. One can prove that for each
eigenvalue λ j its geometric multiplicity cannot exceed its
algebraic multiplicity, that is, ζ (λ j ) � η(λ j ) [47]. The matrix
M is diagonalizable only when the geometric multiplicity is
equal to the algebraic multiplicity for any eigenvalue [47],

ζ (λ j ) = η(λ j ), for 1 � j � d. (3)

Consider a family of non-Hermitian Hamiltonians H (R) �=
H (R)†, which depend on external parameters R. The points
in the parameter space R are called exceptional points (EPs)
when H (R) is not diagonalizable at these points. For param-
eters other than EPs, Eq. (3) holds and there are n linearly
independent eigenvectors for an n × n Hamiltonian matrix H .

B. Covariant and contravariant vectors in Hilbert space

When a non-Hermitian Hamiltonian H is diagonalizable, it
has two sets of eigenvectors |ψ j〉 and |φ j〉 satisfying [6,7,48]

H |ψ j〉 = Ej |ψ j〉, H†|φ j〉 = E∗
j |φ j〉. (4)

They are biorthonormal, 〈φi|ψ j〉 = δi j , and complete∑
j

|ψ j〉〈φ j | = 1. (5)

Usually |ψ j〉 and |φ j〉 are called the right eigenvector and left
eigenvector. We find it more natural to call them contravariant
eigenvectors and covariant eigenvectors. Respectively, they
form one set of contravariant bases and one set of covariant
bases. For a given vector |�〉 in the Hilbert space, it can be
expanded either in the contravariant basis,

|�〉 =
n∑

j=1

c j |ψ j〉 ≡

⎛
⎜⎜⎜⎝

c1

c2

...
cn

⎞
⎟⎟⎟⎠, (6)

or in the covariant basis,

|�〉 =
n∑

j=1

c j |φ j〉 ≡

⎛
⎜⎜⎝

c1

c2
...

cn

⎞
⎟⎟⎠. (7)

The inner product can be naturally written as

〈�|�〉 =
n∑

j=1

c∗
j c

j . (8)

Note that in the above we have introduced upper and lower in-
dices to label covariant and contravariant vectors, respectively.

C. Gauge freedom and pseudonorms in non-Hermitian systems

Consider the dynamics of a non-Hermitian system, which
is given by the Schrödinger equation

ih̄
∂

∂t
|�〉 = H |�〉. (9)

As H is not Hermitian, the norm 〈�|�〉 is not conserved
during the dynamical evolution. This means that we can carry
out a transformation of the wave function |� ′〉 = f |�〉 with
f = | f |eiθ and | f | �= 1. This is a general linear (GL) gauge
transformation in a complex domain. Therefore, in general, a
non-Hermitian system has GL(1,C) gauge freedom.

However, as we shall show immediately, for a class of
non-Hermitian systems, one can define a pseudonorm that is
conserved. For the Hilbert space, there always exists a set
of complete orthonormal bases | j〉, 〈i| j〉 = δi j . When H is
diagonalizable, although the right eigenvectors |ψ j〉 are not
orthonormal, they are linearly independent and form a set of
complete bases. The same is true for the left eigenvectors |φ j〉.
Therefore, there exists an invertible matrix A such that

|ψ j〉 = A| j〉, |φ j〉 = (A−1)†| j〉. (10)

Thus we have |φ j〉 = (A−1)†A−1|ψ j〉 and

〈ψi|X |ψ j〉 = 〈ψi|φ j〉 = δi j, (11)

where X (R) = (AA†)−1 and is apparently Hermitian. We de-
fine the pseudonorm as 〈ψ |X |ψ〉. One can easily prove that,
for arbitrary |ψ〉,

d

dt
〈ψ |X |ψ〉 = 0, (12)

when all the eigenvalues Ej’s are real. A special case of such
a norm is well known in Bogoliubov systems [2]. We will
find later that the Hermitian matrix X plays a crucial role in
specifying the condition for the geometric phase to be real.

III. ADIABATIC EVOLUTION

Consider a non-Hermitian Hamiltonian H (R), which de-
pends on external parameters R. We are interested in its adi-
abatic evolution as R changes slowly with time and how the
geometric phase arises. In conventional quantum mechanics
where H (R) is Hermitian, there is an adiabatic theorem which
states that the occupation probability at each energy level does
not change when there is no degeneracy in the energy levels.
Berry later found that a geometric phase can arise when the
adiabatic theorem holds. We want to find out under what
condition a similar adiabatic theorem holds in non-Hermitian
systems.

We first assume that R is fixed. In this case, as the system
is linear, we can always expand a state |�(t )〉 in terms of the
right eigenstates and write the dynamical evolution as

|�(t )〉 =
∑

j

c j exp

[
− i

h̄
E jt

]
|ψ j〉. (13)

This shows that if Ej’s are complex, then the relative probabil-
ity in each eigenstate |ψ j〉 can change with time. The situation
may become worse when R changes. So, for an adiabatic
theorem to hold in non-Hermitian systems, the eigenvalues
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Ej’s must be real and have no degeneracy. This conclusion
becomes more evident with the following detailed analysis.

When R changes with time, all the eigenstates |ψ j (t )〉 and
eigenvalues Ej (t ) become time dependent. In this case, we can
write the dynamical evolution as

|ψ (t )〉 =
∑

j

c j (t ) exp

[
− i

h̄

∫ t

0
Ej (t

′)dt ′
]
|ψ j (t )〉. (14)

We substitute it into the Schrödinger equation (9) and obtain
using Eq. (4)

ih̄
∑

j

ċ j (t ) exp

[
− i

h̄

∫ t

0
En(t ′)dt ′

]
|ψ j (t )〉

+ ih̄
∑

j

c j (t ) exp

[
− i

h̄

∫ t

0
Ej (t

′)dt ′
]
|ψ̇ j (t )〉 = 0. (15)

Multiplying Eq. (15) with the left eigenstate 〈φm(t )|, we have

ċm = − cm〈φm|ψ̇m〉 −
∑
j �=m

c j〈φm|ψ̇ j〉

× exp

[
− i

h̄

∫ t

0
[Ej (t

′) − Em(t ′)]dt ′
]
. (16)

We assume that the system is initially in state |ψm〉. If the
adiabatic theorem holds, one would have |c j | � 1 ( j �= m)
during the whole process. When Ej’s are all real, the second
term on the right-hand side of the above equation can be safely
neglected as ∣∣∣∣ h̄〈φm|ψ̇ j〉

Em − Ej

∣∣∣∣ � 1, for all j �= m. (17)

This can be found by integrating Eq. (16). We then have

ċm = −cm〈φm|ψ̇m〉. (18)

This is similar to the situation in Hermitian systems. When
Ej’s are complex, the second term can grow exponentially and
cannot be neglected. This means that the adiabatic theorem
cannot hold when Ej’s are complex. From now on we only
consider the real eigenvalue case.

IV. GEOMETRIC PHASE

We are now ready to derive the geometric phase. We
assume that the system is in state |ψ j〉. When the adiabatic
theorem holds, it should evolve with time as

|ψ (R)〉 = |ψ j (R)〉e−i
∫

E j (R)dt

h̄ eiβ j , (19)

where β j is the geometric phase. According to Eq. (18), we
have [49,50]

A j = ∂β j

∂R
= i〈φ j (R)| ∂

∂R
|ψ j (R)〉. (20)

The Berry curvature in three-dimensional parameter space
therefore takes the following form [49],

B j = i〈∇φ j | × |∇ψ j〉, (21)

where ∇ ≡ ∂
∂R . Because |ψ j〉 is usually not equal to |φ j〉

(as H† �= H), the Berry connection and Berry curvature are

generally not real for non-Hermitian systems even when all
Ej’s are real.

Let us now examine under what condition the Berry con-
nection in (20) is real. Differentiating Eq. (11) with respect to
R, we get

〈ψ j |X ∂

∂R
|ψ j〉 +

(
〈ψ j |X ∂

∂R
|ψ j〉

)∗
+ 〈ψ j |∂X

∂R
|ψ j〉 = 0,

(22)

where we have taken advantage of X being Hermitian. There-
fore, when X is R dependent, the following quantity is in
general not zero,

〈ψ j |X ∂

∂R
|ψ j〉 +

(
〈ψ j |X ∂

∂R
|ψ j〉

)∗
�= 0. (23)

This implies that 〈ψ j |X ∂
∂R |ψ j〉 may not be purely imaginary

and thus A j may not be real. The Berry connection is real only
if the following identity holds,

〈ψ j |∂X

∂R
|ψ j〉 = 0. (24)

It is important to note that the above condition is not equiv-
alent to ∂X

∂R = 0. It is possible that the above condition holds
when ∂X

∂R �= 0. The reason is that the matrix X is independent
of choices of | j〉 and is completely determined by |ψ j〉.
Another way to understand this is to note that the condition
(24) is not equivalent to

〈�|∂X

∂R
|�〉 = 0, (25)

where |�〉 is an arbitrary vector in the Hilbert space.
Nevertheless, we find that for many non-Hermitian systems

where Eq. (24) holds we can find an R-independent Hermitian
matrix Y such that

|φ j (R)〉 = α jY |ψ j (R)〉 = X (R)|ψ j (R)〉, for j = 1, 2, . . . ,

(26)

with α j = ±1. Differentiating Eq. (26) with respect to R and
left multiplying it with 〈φ j |, we can still obtain the relation
(24) by virtue of Hermiticity of X and Y and dY/dR = 0.
With the constant Y , the following relation holds,

〈ψ j (R)|Y |ψ j (R)〉 = α j, (27)

and the Berry connection can be expressed as

A j = α j i〈ψ j (R)|Y | ∂

∂R
ψ j (R)〉. (28)

According to the gauge freedom in non-Hermitian sys-
tem considered in Sec. II C, there is a freedom to modify
the jth eigenstate by a complex number f [| f | �= 1 and f ∈
GL(1,C)],

|ψ ′
j〉 = f |ψ j〉, 〈φ ′ j | = 1

f
〈φ j |. (29)

The second equation in (29) is to guarantee the biorthonormal
condition. Upon the gauge transformation (29), the Berry
connection is modified to

A′
j = A j + i

1

f

∂ f

∂R
.
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Writing f = | f |eiθ , we have

A′
j = A j + i

1

| f |
∂| f |
∂R

− ∂θ

∂R
. (30)

When | f | = 1, we recover the result for Hermitian systems.
Furthermore, it can be checked that

|ψ ′
j〉ei

∫ R2
R1

A′
j dR = |ψ j〉ei

∫ R2
R1

A j dR
, (31)

indicating that the current framework for the geometric phase
is self-contained.

V. MONOPOLES

We have defined exceptional points (EPs) as points in the
parameter space R where the non-Hermitian matrix H (R) is
not diagonalizable. In this section we shall show that they
are monopoles in the sense that the divergence of the Berry
curvature ∇ · B j does not vanish.

According to Eq. (21), the Berry curvature can be
written as

B j = ∇ × A j = i
∑

j′
〈∇φ j |ψ j′ 〉 × 〈φ j′ |∇ψ j〉, (32)

where the completeness condition in (5) is employed. To
calculate the divergence of the Berry curvature, i.e., ∇ · B j ,
we introduce an auxiliary operator

F = −i
∑

n

|∇ψn〉〈φn| = i
∑

n

|ψn〉〈∇φn|, (33)

where the second equality is ensured by the completeness
relation (5). It can be checked that

∇ × F = −iF × F. (34)

The Berry curvature can be expressed in terms of F as

B j = i
∑

j′
〈φ j |F|ψ j′ 〉 × 〈φ j′ |F|ψ j〉 = i〈φ j |F × F|ψ j〉. (35)

Finally, by virtue of Eq. (34), we find

∇ · B j = i[〈∇φ j | · (F × F)|ψ j〉 + 〈φ j |(F × F) · |∇ψ j〉
+ 〈φ j |∇ · (F × F)|ψ j〉]

= i[−i〈φ j |F · (F × F)|ψ j〉 + i〈φ j |(F × F) · F|ψ j〉
+ 〈φ j |(∇ × F) · F|ψ j〉 − 〈ψ j |F · (∇ × F)|ψ j〉]

= 0. (36)

In the above derivation we have used the completeness rela-
tion (5), which is equivalent to H (R) being diagonalizable.
Therefore, for all the points in the parameter space R other
than EPs, the divergence of the Berry curvature is zero. In
other words, monopoles can only be EPs.

VI. EXAMPLES

In the above we have presented a general framework
for geometric phases in non-Hermitian systems. In this sec-
tion we use two simple examples to illustrate these results.
Specifically, these two examples are a Dirac model with
non-Hermitian terms and a two-mode Bogoliubov–de Gennes
model describing the bosonic Bogoliubov quasiparticles.

A. Non-Hermitian Dirac model

As the first illustrative example, we investigate the Dirac
model with a non-Hermitian term. The Hamiltonian is

H = pxσx + pyσy + (pz + is)σz, (37)

where px, py, and pz are the Bloch momentum and s is a real
constant, denoting the gain and loss of particles. σx, σy, and σz

are Pauli matrices. This non-Hermitian Dirac model has been
recently studied to reveal the topology of energy bands and
the properties of the edge state [43–46]. The energy bands of
H are [with p ≡ (px, py, pz )]

E1(2) = ±
√

p2 − s2 + 2i(pzs). (38)

They are real when pz = 0 and p2
x + p2

y � s2. In particular,
E1 = E2 = 0 on the ring p2

x + p2
y = s2 at pz = 0. We shall

show that this ring is a collection of EPs, where H becomes
nondiagonalizable. It is worth noting that we found a disk-
shaped monopole in a nonlinear quantum system [51].

For a point on the ring p2
x + p2

y = s2 at pz = 0, we can
obtain the algebraic multiplicity η(0) according to Eq. (1), and
the geometric multiplicity ζ (0) by examining the number of
linearly independent eigenstates with a zero eigenvalue. The
result is η(0) = 2 and ζ (0) = 1, violating the diagonalizable
condition (3). This means that all points on the ring are EPs.
For any point off the ring, we have η(E1) = ζ (E1) = η(E2) =
ζ (E2) = 1, which satisfies the diagonalizable condition. In
other words, all EPs are on the ring p2

x + p2
y = s2 at pz = 0.

When H in Eq. (37) is diagonalizable, its biorthonormal
eigenstates corresponding to the eigenenergy E1 and E2 are

|ψ1〉 =
(√

p2 − s2 + 2ipzs + is + pz

px + ipy

)
,

|φ1〉 =

⎛
⎜⎝

1

2
√

p2−s2−2ipzs√
p2−s2−2ipzs+is−pz

2(px−ipy )
√

p2−s2−2ipzs

⎞
⎟⎠, (39)

|ψ2〉 =
( −px + ipy√

p2 − s2 + 2ipzs + is + pz

)
,

|φ2〉 =

⎛
⎜⎝−

√
p2−s2−2ipzs+is−pz

2(px+ipy )
√

p2−s2−2ipzs

1

2
√

p2−s2−2ipzs

⎞
⎟⎠. (40)

The above eigenstates are unique only up to a gauge freedom
of GL(1,C) [see Eq. (29)]. Any state in two-dimensional (2D)
Hilbert space |�〉 = c1|ψ1〉 + c2|ψ2〉 = c1|φ1〉 + c2|φ2〉 can
be expanded on either the contravariant eigenvectors |ψ1(2)〉
or covariant ones |φ1(2)〉, with the norm being 〈�|�〉 = c∗

1c1

+ c∗
2c2.
According to the Schrödinger equation (9), a state evolves

with t as

|�(t )〉 = c1 exp

(
− i

h̄
E1t

)
|ψ1〉 + c2 exp

(
− i

h̄
E2t

)
|ψ2〉.

(41)

The norm 〈�(t )|�(t )〉 is not conserved as 〈ψ1|ψ2〉 �= 0.
However, the pseudonorm 〈�|X |�〉 is conserved when
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p2
x + p2

y > s2 and pz = 0. With Eqs. (39) and (40), we find
that

X (px, py) = 1

2

⎛
⎝ 1 −s py+ipx

p2
x+p2

y

−s py−ipx

p2
x+p2

y
1

⎞
⎠. (42)

We turn to the adiabatic evolution and geometric phase.
According to our general theory, the adiabatic evolution is
possible only when E1 and E2 are real. This means that for
this particular model the adiabatic evolution can happen when
p2

x + p2
y > s2 and pz = 0. When px and py change slowly

on the plane pz = 0 with p2
x + p2

y > s, an initial eigenstate
|ψ1(2)[px(0), py(0), pz = 0]〉 will always be on the instan-
taneous eigenstate |ψ1(2)[px(t ), py(t ), pz = 0]〉. We study the
geometric phase on this plane with constant s.

For this example, Eq. (24) does not hold, indicating that the
Berry phase is generally complex. According to Eq. (21), we
obtain the purely imaginary Berry curvature

B1(2) = ∓ i

2

s(
p2

x + p2
y − s2

) 3
2

, (43)

with −/+ for the state |ψ1〉/|ψ2〉. The Berry curvature is in
the pz direction, and is divergent on the EP ring p2

x + p2
y = s2,

pz = 0. One can check that the Berry curvature does not
change upon the gauge transformation imposed by f as shown
in Eq. (29), whereas the corresponding Berry connection is
modified as shown in Eq. (30). Our general theory dictates
that, as (px, py) change adiabatically around a loop C in the
plane p2

x + p2
y > s, pz = 0 without enclosing the disk p2

x +
p2

y < s, pz = 0, the state returns to the initial state but with
a purely imaginary geometric phase,

|ψ〉 = |ψ1[px(0), py(0)]〉ei
∫

S B1d pxd py

= |ψ1[px(0), py(0)]〉e
∫

S
s

2(p2
x+p2

y−s2 )
3
2

d pxd py

, (44)

with S denoting the area enclosed by the loop C. As an exam-
ple, we consider a circle on the plane pz = 0 centered on the
origin px = py = pz = 0 with its radius |p| > s (enclosing the
disk p2

x + p2
y < s, pz = 0). For this circle, the Berry phase β

can be calculated by integrating the Berry connection derived
from the eigenstates (39) and (40) (counterclockwise seen
from the positive pz axis),

β = ∓π (
√

|p|2 − s2 − is)√
|p|2 − s2

, (45)

with −/+ for the state |ψ1〉/|ψ2〉. The complex geometric
phase can be viewed as a geometric gain or loss of parti-
cles in dissipative systems described by the non-Hermitian
Hamiltonian [49].

B. Bogoliubov–de Gennes equation

The second example is the simplest Bogoliubov–de
Gennes system, which has only two modes. Its Hamiltonian
reads

H =
(

z y + ix
−y + ix −z

)
= ixσx + iyσy + zσz, (46)

where x, y, and z are real parameters. This Bogoliubov–de
Gennes Hamiltonian governs the dynamics of bosonic Bogoli-
ubov quasiparticles. Its eigenenergies are

E1(2) = ±
√

z2 − x2 − y2, (47)

which are real when z2 � x2 + y2. In the parameter space
spanned by (x, y, z), all points on the surface of the cone
z2 = x2 + y2 are EPs as one can show that the algebraic
multiplicity η(0) = 2 but the geometric multiplicity ζ (0) =
1 on the degenerate cone. Off the cone, we have η(E1) =
ζ (E1) = η(E2) = ζ (E2) = 1.

In a certain gauge, the biorthonormal contravariant and
covariant eigenvectors can be worked out as

|ψ1〉 =
(

a
b

)
, |φ1〉 =

(
a

−b

)

|ψ2〉 =
(

b∗
a∗

)
, |φ2〉 =

(
b∗

−a∗

)
, (48)

where

a(x, y, x) = − 1√
2

z +
√

z2 − x2 − y2√
z2 − x2 − y2 + z

√
z2 − x2 − y2

,

b(x, y, z) = 1√
2

y − xi√
z2 − x2 − y2 + z

√
z2 − x2 − y2

. (49)

The biorthonormal states can be modified freely by a gauge
transformation as shown in Eq. (29).

Under the Bogoliubov–de Gennes equation, the norm
〈�|�〉 of a general state

|�〉 = c1 exp

(
− i

h̄
E1t

)
|ψ1〉 + c2 exp

(
− i

h̄
E2t

)
|ψ2〉 (50)

is not conserved. Instead, what is conserved during the tem-
poral evolution is the pseudonorm 〈�|X |�〉, where

X (x, y, z) =
(

|a|2 + |b|2 −2ab∗

−2a∗b |a|2 + |b|2
)

. (51)

The adiabatic evolution can occur when (x, y, z) change
slowly inside the cone z2 > x2 + y2 where the eigenenergies
are real. In this example, we can find that Eq. (24) holds, i.e.,
〈ψ1(2)| ∂X

∂R |ψ1(2)〉 = 0, indicating that the Berry phase becomes
real. According to Eq. (21) we find that the Berry curvature
is [1]

B = ∓ (1 + tan2 θ )
3
2

2(1 − tan2 θ )
3
2 |R|2

R̂, (52)

with −/+ associated with the state |ψ1〉/|ψ2〉, θ =
arctan(

√
x2+y2

z ), and R ≡ (x, y, x) (R̂ is the unit vector along
R). Upon the gauge transformation (29), the Berry connection
is modified according to Eq. (30) but the Berry curvature is
fixed. The Berry curvature becomes divergent as θ → ±π/4,
i.e., on the degenerate cone determined by z = ±

√
x2 + y2,

indicating that these EPs on the cone are monopoles.
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In this example, the constant Y matrix as shown in Eq. (27)
exists and it is just one of the Pauli matrices,

Y = σz =
(

1 0
0 −1

)
, (53)

with α1 = 1 and α2 = −1 defined in Eq. (26). We then have
the simple relations |φ1〉 = Y |ψ1〉, |φ2〉 = −Y |ψ2〉, and the
Berry connections according to Eq. (28) [1,52],

A1(2) = ±i〈ψ1(2)|σz
∂

∂R
|ψ1(2)〉, (54)

with +/− associated with the state |ψ1〉/|ψ2〉. The geometric
phase being real indicates that there is no geometric gain or
loss of the particles during the adiabatic evolution.

As an example, we consider a circle z = √
3, x2 + y2 = 1.

As (x, y, z) scans along the circle (counterclockwise seen
from above), the Berry phase can be worked out either
by the curve integration of the Berry connection or by the
area integration of the Berry curvature. The resulted phase
β = ∓π (

√
3/2 − 1) (with −/+ associated with the state

|ψ1〉/|ψ2〉).
The Chern number, which reflects the total magnetic

charge contained by the monopole, can be calculated from

Eq. (52) as

Cn → ∓∞. (55)

This is drastically different from the Chern numbers in Her-
mitian systems, which are always 2nπ with n being integer.

VII. SUMMARY

To summarize, we have studied the adiabatic geometric
phase of non-Hermitian quantum mechanics. We show that
the structure of the geometric phase of non-Hermitian quan-
tum mechanics is quite different from the unitary quantum
mechanics. Since such non-Hermitian dynamics can be gener-
ically found or constructed in various physical systems, the
current results provide insights into these non-Hermitian sys-
tems. The present work also provides a different perspective
toward the fundamental understanding of quantum evolution.
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