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Microscope for quantum dynamics with Planck cell resolution
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We introduce the out-of-time-correlation (OTOC) with the Planck cell resolution. The dependence of this
OTOC on the initial state makes it function like a microscope, allowing us to investigate the fine structure of
quantum dynamics beyond the thermal state. We find an explicit relation of this OTOC to the spreading of the
wave function in the Hilbert space, unifying two branches of the study of quantum chaos: state evolution and
operator dynamics. By analyzing it in the vicinity of the classical limit, we clarify the dependence of the OTOC’s
exponential growth on the classical Lyapunov exponent.
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I. INTRODUCTION

In recent years, the out-of-time-order correlation (OTOC)
[1,2] has attracted great attention in the field of quantum
dynamics [3,4]. It offers us a powerful tool to quan-
tify quantum chaotic behavior, particularly, in many-body
systems [5–7]. However, there remains some fundamental
issues, two of which are what we try to resolve in this
paper.

The cause of the growth of the OTOC is not clear yet.
It has been found that the early-time growth of the OTOC
is related to the classical Lyapunov exponent [8–12]. This
makes the OTOC popular in the study of quantum chaos.
However, recent works demonstrated such exponential growth
can be caused by a saddle point but not chaos [13,14]. One
of the reasons is that the usual OTOC [2] (thermal OTOC
below) has no dependence on the initial conditions, which
is a general feature of all dynamics. In particular, as is well
known, the dynamics of the same classical system can be
regular for one set of initial conditions and chaotic for another
set of initial conditions. This is usually illustrated with the
Poincaré section [e.g., see Fig. 1(a)] [15–17]. Thus, we cannot
directly use the growth of the OTOC as an indicator to classify
dynamics.

Quantum chaotic behavior can also be characterized by the
wave-packet spreading [18–24]. This Schrödinger picture dy-
namics corresponds to our intuitive understanding to chaotic
motion. In contrast, the OTOC reflects the quantum dynamics
in the Heisenberg picture [23,25]. Some evidence implies
that these two pictures are related [4,23], but an analytical
derivation is still lacking.
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To resolve the above issues, we introduce a modified ver-
sion of the OTOC,

C(t, x) = −〈x| [Q̂(t ), P̂(0)]2 |x〉 . (1)

State |x〉 for one dimension is

|x〉 ≡ |Qx, Px〉 = 1√
�q

∫ Qx+�q

Qx

dq |q〉 eiPxq/h̄. (2)

The generalization to higher dimensions is straightforward.
Variable x traverses all Planck cells [squares in Fig. 1(b)]
by x = (Qx, Px ) = x0 + (m�q, n�p) where m, n are integers,
�q,�p are size of cells along q, p axes with �q�p = 2π h̄,
and x0 is the origin of phase space. These states |x〉 form
a set of complete orthonormal basis (see Appendix A), and
they are localized in both position and momentum space
[26–28]. Operators Q̂ = ∑

x |x〉 Qx 〈x| and P̂ = ∑
x |x〉 Px 〈x|

are so-called macroscopic position and momentum operators
[21,28–30]. There are already many variations of the OTOC
[2,3,9,31,32]. Compared to these definitions and the original
one [1,2], our definition of the OTOC is state dependent.
That is, for different states |x〉, this OTOC has distinct long-
time behavior. As a result, we can use it to plot a quantum
version of the Poincaré section. An example of the quantum
kicked rotor [26,27] is shown in Fig. 1(b), which captures the
salient features in the corresponding classical Poincaré section
in Fig. 1(a). Since the thermal OTOC [2] averages over all
quantum states, our OTOC functions, such as a microscope for
quantum dynamics with Planck cell resolution. Furthermore,
we can analytically show that the dynamical behavior of this
OTOC is explicitly related to the wave packet spreading and
clarify the dependence of the OTOC growth on the classical
Lyapunov exponent.

II. TIME EVOLUTION OF THE OTOC

The long-time behavior of the OTOC in Eq. (1) can be
shown related to the wave packet spreading explicitly. To see
this, we consider the semiclassical limit h̄ → 0. At this limit,
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FIG. 1. The comparison between the classical Poincaré section
and its quantum version for a kicked rotor. (a) The classical one is
generated by random sampling in phase space and with 100 kicks.
(b) The quantum version with dimensionless effective Planck con-
stant h̄ ≈ 0.007 is constructed by computing the OTOC defined in
Eq. (1) for each Planck cell with 70 kicks. The blue valleys of the
OTOC correspond to the classical integrable islands. The kicking
strength is K = 4.7.

the matrix elements of the propagator 〈q′| Û |q〉 ∼ eiS(q,q′ )/h̄

[33] in the basis of Planck cells can be written as

〈Q′, P′| Û |Q, P〉 ∝
∫ Q′+�q

Q′
dq′

∫ Q+�q

Q
dq

× exp

(
i
Pq − P′q′ + S(q, q′)

h̄

)
. (3)

Because of the stationary-phase approximation [34], the
nonvanishing zeroth-order term of the above integral is de-
termined by equations,

P = −∂S(Q, Q′)
∂Q

, P′ = ∂S(Q, Q′)
∂Q′ , (4)

which is the classical trajectory governed by action S [15].
This suggests us to rewrite Eq. (3) as follows:

〈x′| Û (t ) |x〉 = eiφ(x)δx′,gcx + f (x′, x, t ), (5)

where x, x′ are Planck cells as in Eq. (2) and gcx is the cell
containing gx, which is the state driven classically beginning
from x at time t . The function f , which we call the quantum
spreading function, describes the pure quantum dynamics on
top of the classical dynamics. When h̄ gets to zero, the func-
tion f vanishes and Planck cells become continuous such that
gc = g. In this limit, the pure quantum dynamics is completely
suppressed, and we are left with only the classical dynamics.

The left-hand side of Eq. (5) 〈x′|Û (t )|x〉 describes how a
wave packet initially localized at Planck cell x evolves and
arrives at Planck cell x′. The right-hand side shows that it has
two different contributions. The first term transports dynami-
cally state x into its classical target gx. Due to the finite size of
Planck cells, gc implements a coarse-grained version of clas-
sical dynamics. When the evolution time is shorter or around
Ehrenfest time [35,36], this term dominates. The second term
breaks this classical picture and depicts how widely the wave
packet spreads due to quantum effects. The function f (x′, x, t )
begins to be significant after the Ehrenfest time and becomes
dominate beyond another timescale called quantum time [37].
In the following, we show how they contribute separately to
the OTOC and result in quantum chaos.

FIG. 2. The value of | f (gcz, x, t )|2 at points z − x = (Qz −
Qx, Pz − Px ) for the kicked rotor of kicking strength K = 4.7. The
number of kicks is 40, and the effective Planck constant h̄ ≈ 0.007.
The initial state for (a) is the Planck cell x = (0.35, 0.7) (inside an
integrable island); the initial state for (b) is x = (0.2, 0.2) (inside
the chaotic sea). They are also, respectively, the initial states for the
island results and chaotic in (c) and (d). (c) The growth of normalized
GWvN entropy [38]. (d) The growth of the OTOC. The dashed line
is the thermal OTOC at temperature T = ∞ as in Eq. (7).

With Eq. (5) we can show an explicit relation between
the growth of the OTOC and the wave-packet diffusion. The
leading order of the OTOC in Eq. (1) is the second order of f
and can be written as (see Appendix B),

C(t, x) =
∑

z

(Pz − Px )2(Qgcz − Qgcx )2| f (gcz, x, t )|2, (6)

where (Qx, Px ) are the coordinate and momentum of the
Planck cell |x〉. The time-dependent terms are (Qgcz − Qgcx )2

and | f (gcz, x, t )|2. The former is the partial distance between
trajectories. It can reflect the sensibility of the coarse-grained
classical dynamics gc to the initial condition x when z is close
to x. The latter one weights these terms in this summation. The
region around x in which | f (gcz, x, t )|2 is significant shows
how widely the wave packet spreads.

The features of the quantum Poincaré section shown in
Fig. 1(b) are due to the function | f (gcz, x, t )|2. For x initially
in a classical integrable island, | f (gcz, x, t )|2 cannot spread as
widely as it does in chaotic sea. This is clearly demonstrated
by the numerical results in Figs. 2(a) and 2(b). For point
x located in an integrable island, function | f (gcz, x, t )|2 is
significant only when z is close to x. This together with the
regular motion in an integrable island makes OTOC C(t, x)
saturate at a small value: (Pz − Px )2 measures the size of
this small region, whereas (Qgcz − Qgcx )2 cannot grow fast
because of the regular motion. In contrast for point x located
in a chaotic sea, | f (gcz, x, t )|2 widely spreads over the chaotic
sea and renders a larger saturation value for the OTOC. In
addition, we use the generalized Wigner–von Neumann en-
tropy [38] to show how widely the wave packet spreads in
the long run in Fig. 2(c). In Fig. 2(d), our OTOC behaves
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FIG. 3. (a) The Poincaré section of the classical kicked rotor of
kicking strength K = 1.3. (b) The time evolution of our OTOC for
two Planck cell states corresponding to the labeled points in (a).
For comparison, the thermal OTOC at temperature T = ∞ is also
computed (dashed line).

similarly. This further confirms that our OTOC is related to
the wave-packet spreading.

The thermal OTOC cannot illustrate the state depen-
dency of dynamics, such as the quantum Poincaré section in
Fig. 1(b). It computes the expectation value for the thermal
state at infinitely high temperature as

C(t ) = −Tr[Û †Q̂Û , P̂]2

Tr 1
= 1

D

∑
x

C(t, x), (7)

where D = Tr 1 is the dimension of the Hilbert space and
is also the number of Planck cells. We note that it agrees
with the thermal state whose density matrix is proportional
to identity as ρ̂ = 1/Tr 1. C(t ) is the average of C(t, x) over
the whole phase space or all the Planck cells with uniform
weight. The behavior of C(t ) is determined by the sizes of
the areas occupied by integrable islands and chaotic seas in
phase space. In Fig. 2(d), the thermal OTOC behaves, such
as the chaotic case (blue line) because the chaotic sea dom-
inates. As a comparison, we consider a kicking strength that
is close to Kc ∼ 0.972 [39]. The areas of integrable islands
and chaotic sea are balanced as shown in Fig. 3(a). This leads
to the dynamics in Fig. 3 (b) in which C(t ) is different from
C(t, x) for both integrable and chaotic cases. If we regard the
OTOC as a microscope imaging the dynamical structure in the
phase space, our OTOC in Eq. (1) has Planck cell resolution,
which is the best allowed by quantum mechanics, whereas the
thermal one, namely, C(t ) can only render a smeared image
with the crudest resolution that can only reveal whether the
dominant part is an integrable island or a chaotic sea.

In this section, we have achieved two goals mentioned in
the Introduction. First, we provide an OTOC-like tool to study
the dynamics with initial condition dependence by Eq. (1)
with Planck cell resolution. Second, we answer how two pic-
tures are related in quantum chaos with Eq. (6). It analytically
attributes the growth of the OTOC to the coarse-grained clas-
sical dynamics and wave-packet spreading. The former one
is numerically studied in Ref. [4,23], whereas the latter one,
which is affected by the energy spectrum, has been discussed
[40,41]. In the next section, we compare our OTOC with the
common one in the vicinity of classical dynamics, showing
the advantage of our form.

III. THE OTOC AND LYAPUNOV EXPONENT

The early-time growth of our OTOC is related to the clas-
sical Lyapunov exponent. The quantum spreading function
f (x′, x, t ) is very narrow during the early time evolution no
matter whether x is located in the integrable islands or chaotic
sea. As a result, we are allowed to take f out from the sum-
mation in Eq. (6) and obtain

C(t, x) ≈ A
∑

z

(
Qgcz − Qgcx

)2 ∼ e2λQt , (8)

where A = (Pz − Px )2| f (gcz, x)|2 is a positive number and
the summation is over the neighborhood of x. The last term
with λQ is due to that (Qgcz − Qgcx )2 is the result of the
coarse-grained classical dynamics. At the limit of h̄ → 0, the
Lyapunov exponent of OTOC λQ becomes the classical Lya-
punov exponent λC because of limh̄→0 gc = g. When time t is
not short and/or the Planck constant h̄ is not small enough, the
factor | f |2 cannot be taken out of the summation. Therefore,
the exponential growth of the OTOC is not guaranteed, in
general, because the evolution of | f |2 is influenced not just
by the classical Lyapunov exponent.

To demonstrate the exponential growth in Eq. (8) numer-
ically, we turn to the continuous time evolution in a two-site
Bose-Hubbard model [42–44]. There are two reasons for this
choice: (1) This model is simple enough for a reliable nu-
merical study; (2) the time evolution of the kicked rotor is
discretized and not convenient for analyzing short-time behav-
ior. See Appendix C for the chaotic but discretized case. That
makes our result more robust. This Bose-Hubbard model is
also studied in Ref. [13] as the Lipkin-Meshkov-Glick (LMG)
model. Its Hamiltonian is given by (with h̄ = 1) [44]

Ĥ = 1

2
(â†

1â0 + â†
0â1) − 1

N
(â†

1â1 − â†
0â0)2, (9)

where â0,1, â†
0,1 are annihilation and creation operators and

N is the total number of bosons in the system. For this
system, the effective Planck constant is 1/N . When N →
∞, the system becomes classical in the sense of mean-field
approximation [45,46]. The system can be described by a
single-particle Hamiltonian system of

H (q, p) =
√

1/4 − p2 cos q − 4p2. (10)

There is a saddle point at x∗ = (q∗, p∗) = (π, 0), and the
Lyapunov exponent of it is λC = √

3 (see Appendix D).
We focus on the quantal system of finite but large N .

The Planck cell basis of discretized form (see Appendix D 1)
is defined with the eigenstates of momentum operator p̂ =
(â†

0â0 − â†
1â1)/2N [37,44]. In Fig. 4(a), the growth of the

OTOC of C(t ) = 〈x∗| [P̂(t ), P̂(0)]2 |x∗〉 at the saddle point is
shown. It is clear from the fitting that the growth of C(t ) is
exponential with the double of classical Lyapunov exponent
of 2

√
3, which agrees with our analysis in Eq. (8). As a

comparison, we have also computed the OTOC in the form
of −〈[ p̂(t ), p̂(0)]2〉, which was discussed in Ref. [13]. Our
computation is performed both at infinity temperature and on
the Planck cell of the saddle point. The results are shown in
Fig. 4(b). Although we also see exponential growth, however,
both exponents are different from the classical Lyapunov ex-
ponent. We also plot the growth of the width W 2(t ) of the
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FIG. 4. Numerical results of the LMG model of N = 1681 and
h̄eff ∼ 1/N = 0.0005. (a) Our OTOC with macroscopic momentum
P̂ at the saddle point (blue line). The green line is the width of
the wave packet along the P-axis W 2(t ). Two red lines are both of
exponent 2

√
3 = λC . (b) The OTOC with momentum p̂. The blue

line is for its expectation value over |x∗〉, the Planck cell basis of the
classical saddle point; the green line is the usual expectation over the
thermal state at T = ∞.

wave function along axis of P in Fig. 4(a). It is an approxima-
tion to Eq. (6) by

W 2(t ) = 〈x∗| Û †(P̂(0) − 0)2Û |x∗〉
≈

∑
z

(
Pgcz − Pgcx∗

)2| f (gcz, x∗)|2 ∼ C(t ). (11)

We can find that its growth also fits the classical Lyapunov
exponent well.

Note that we have replaced Q with P in Eq. (6) in the above
computation for the convenience of comparison to the results
in Ref. [13]. Technically, since Q̂, P̂ commute, our results for
the OTOC in Eq. (6) can be generalized for any operator pairs
that are functions of Q̂, P̂ as

CAB(t, x) = −〈x|[Û †A(Q̂, P̂)]Û , B(Q̂, P̂)]2|x〉
=

∑
z

[A(gcz) − A(gcx)]2[B(z) − B(x)]2

× | f (gcz, x, t )|2, (12)

where A, B are functions defined in phase space.
As indicated by the results in Fig. 4, the exponent of the

OTOC can be different from the classical Lyapunov exponent.
This difference has been noted before [9,47]. Our numerical
result shows that it is deeply related to the choice of opera-
tors. The OTOC with p̂ at the saddle point [the blue line in
Fig. 4(b)] grows different from classical Lyapunov exponent,
whereas our OTOC with P̂ does not.

A probable explanation for the inconsistency is that the
classical limit for the LMG model is different from sys-
tems with spatial degrees of freedom. There is no canonical
commutation relation of [q̂, p̂] = ih̄ in the finite-dimensional
Hilbert space. The classical dynamics of the LMG model is
described as the transportation among Planck cell basis [the
zeroth order in Eq. (5)]. Since Eq. (6) only relies on this prop-
erty of quantum evolution, our OTOC and the analysis still
work for the LMG model. It is shown in Ref. [12] that under
the Wigner-Weyl transformation, the operator −[q̂(t ), p̂(0)]2

leads to a function characterized by classical Lyapunov ex-
ponent in phase space in the classical limit. We illustrate
the thermal OTOC of inverted harmonic oscillator [14] in

Appendix E. In this system with intrinsic symplectic form,
exponential growth of the OTOC of q̂ and Q̂ shares the same
exponent and agrees with the classical value.

IV. CONCLUSION

We have introduced a state-dependent form of the OTOC,
which serves as a microscope for resolving the fine structure
in quantum dynamics. With analytical derivation, we have
extracted and explained two sources of the growth of this
OTOC. One controls its short-time behavior whereas the other
determines its long-time saturation. The early-time exponen-
tial growth of the OTOC is caused by the former and related
to the classical Lyapunov exponent. We are also able to show
explicitly how the operator correlation in the OTOC is related
to wave-packet spreading in Hilbert space.
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APPENDIX A: BASIS OF QUANTUM PHASE SPACE

We focus on a one-dimensional system; the results can
be generalized straightforwardly to higher dimensions. For
a one-dimensional classical system, its phase pace is two
dimensional. In quantum statistical mechanics, one usually
divides the phase space into Planck cells to obtain quantum
phase space. In 1929, von Neumann proposed to construct
a set of orthonormal basis by assigning each Planck cell a
localized wave function [29,30]. This idea has been further
developed with the help of the Wannier functions [21,26,28].

One basis for such a quantum phase space can be con-
structed with the following basis function:

|Q, P〉 = 1√
�q

∫ Q+�q

Q
dq |q〉 eiPq/h̄. (A1)

Here q is the position of a particle, and |q〉 is the eigenstate of
q̂. �q is one side of the Planck cell, and the other side is �p

such that q̂. �q’s are discretized position and momentum of a
given Planck cell.

They are orthonormal: 〈Q′, P′| Q, P〉 = δQ,Q′δP,P′ . Here is
the proof,

〈Q′, P′| Q, P〉

= 1

�q

∫ Q+�q

Q

∫ Q′+�q

Q′
dq dq′δ(q − q′)eiPq/h̄−iP′q′/h̄

= 1

�q
δQ,Q′

∫ Q+�q

Q
dq ei(P−P′ )q/h̄

= δQ,Q′
ei(P−P′ )Q/h̄

i(P − P′)/h̄
[ei(P−P′ )�q/h̄ − 1]

= δQ,Q′δP,P′ , (A2)
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where we have used the property that P − P′ ≡ 0 mod �p.
That they are normalized can also be checked.

We can also construct the Planck cell basis with eigenstates
of p̂ as

|Q, P〉m = 1√
�p

∫ P+�p

P
d p |p〉 e−iQp/h̄. (A3)

The sign difference in the exponent comes from the symplec-
tic structure of classical mechanics. Only when we use such
a sign for Qp, we can get the correct classical equation of
motion from the quantum propagator at the limit of h̄ → 0.
This set of basis is consistent with the previous one, that is,

lim
h̄→0

| 〈Q′, P′| Q, P〉m|2 = δQ,Q′δP,P′ . (A4)

One can check it as follows:

〈Q′, P′| Q, P〉m

= 1√
�q�p

∫ P+�p

P
d p

∫ Q′+�q

Q′
dq e−iQp/h̄−iP′q/h̄ 〈q| p〉

= 1√
hV

∫ �p

0
d p

∫ �q

0
dq exp{−i[Q(p + P)

+ P′(q + Q′) − (p + P)(q + Q′)]/h̄}

= eiα

√
hV

∫ �p

0
d p

∫ �q

0
dq e−i[(Q−Q′ )p+(P′−P)q−qp]/h̄.

(A5)

At the limit of h̄ → 0, the main contribution of the integral
appears at the point of Q = Q′, P = P′.

APPENDIX B: MATHEMATICAL DETAILS FOR C(t, x)

With x = (Qx, Px ) and operators,

Q̂ =
∑

x

|x〉 Qx 〈x| ; P̂ =
∑

x

|x〉 Px 〈x| , (B1)

we have

−C(t, x) = 〈x| [Û †Q̂Û , P̂]2 |x〉

= 〈x|
( ∑

z,z′,z′′
|z′′〉 〈z′| (〈z′′| Û † |z〉 〈z| Û |z′〉 QzPz′

− 〈z′′| Û † |z〉 〈z| Û |z′〉 QzPz′′ )

)2

|x〉

= −
∑

z1,z2,z3

〈x| Û † |z1〉 〈z1| Û |z2〉 〈z2| Û † |z3〉

× 〈z3| Û |x〉 Qz1 Qz3 (Pz2 − Px )2.

Since the propagator reads

〈x′| Û |x〉 = eiφ(x)δx′,gcx + f (x′, x), (B2)

we can compute C(t, x) by the orders of f . The zeroth order of
C is made up with four Kronecker symbols. Then the product
leads to factor of δz2,x, this factor together with (Pz2 − Px )2

makes the zeroth order vanish. For the same reason, the first
order of C contains a product of three Kronecker symbols, z2

will always be connected with x and contributes a zero factor.
Thus, the leading term of C(t, x) should be the second order
of f . With the omission of two terms in which the product of
Kronecker symbols connects x and z2, the nonzero terms of
the second order are

C(2) =
∑

z

f ∗(z, x) f (z, x)Q2
z

(
Pg−1

c z − Px
)2 +

∑
z

f (gcx, z) f ∗(gcx, z)QgcxQgcx(Pz − Px )2

+
∑

z

f (gcx, z) f (gcz, x)QgcxQgcz(Pz − Px )2e−iφ(x)−iφ(z)

+
∑

z

f ∗(z, x) f ∗(gcx, g−1
c z

)
QzQgcx

(
Pg−1

c z − Px
)2

eiφ(g−1
c z)+iφ(x)

=
∑

z

(Pz − Px )2|Qgcz f (gcz, x)e−iφ(x) + Qgcx f ∗(gx, z)eiφ(z)|2. (B3)

With the unitarity of expansion of time evolution operator (up
to the first order of f ), we have

δx,x′ =
∑

z

〈x′| Û |z〉 〈z| Û † |x〉

=
∑

z

[
eiφ(z)δx′,gcz + f (x′, z)

][
eiφ(z)δx,gcz + f (x, z)

]∗

= δx,x′ + eiφ(g−1
c x′ ) f ∗(x, g−1

c x′)
+ e−iφ(g−1

c x) f
(
x′, g−1

c x
) + · · · . (B4)

This leads to an equality of

eiφ(x′ ) f ∗(gcx, x′) + e−iφ(x) f (gcx′, x) = 0. (B5)

Thus, we have the second order of C(t, x),

C(2) =
∑

z

(Pz − Px )2
(
Qgcz − Qgcx

)2| f (gcz, x)|2. (B6)

This is what we discussed in the main text.

APPENDIX C: EARLY TIME GROWTH OF THE OTOC
IN THE KICKED ROTOR

The dynamics of the kicked rotor is driven by the Hamilto-
nian of

H = 1

2
p2 + K cos q

∞∑
n=−∞

δ(t − n). (C1)
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FIG. 5. The value of the OTOC C(t ) on the point of x = (q, p) =
(0.5, 0.5) in the kicked rotor with kicking strength K = 4.7 > Kc ≈
0.97. The system is chaotic, and the phase-space structure is shown
in Fig. 1 in the main text. (a) The growth of the usual OTOC
for momentum C(t ) = − 〈x| [ p̂(t ), p̂(0)]2 |x〉. The red line is the
exponential growth with twice of the average classical Lyapunov ex-
ponent λ̄ ≈ 1.35. (b) The growth of our OTOC for macromomentum
C(t ) = − 〈x| [P̂(t ), P̂(0)]2 |x〉. The red line is the same as the one in
(a) (up to a factor).

In classical mechanics with the periodic boundary condition,
the dynamics is described by the Chirikov standard map of

pn+1 = pn + K sin qn mod 2π,

qn+1 = qn + pn+1 mod 2π. (C2)

With proper rescaling of the canonical pair (q, p) →
(q/2π, p/2π ), we can confine the dynamics in the region
of [0, 1]⊗2. Thus, in the main text our Planck cells are 0 �
Q, P < 1. The dynamics becomes chaotic when the kick-
ing strength K gets beyond the critical value of Kc ∼ 63/64
[27,39]. Here we present the numerical results on the early
growth of the OTOC in this system with K = 4.7, which are
shown in Fig. 5. The parameters used in our computation are
the same as the ones used Figs. 1 and 2 in the main text.
Similar to what we have performed for the LMG model and

bounded inverted harmonic oscillator, we compare two types
of the OTOC here. One is the common one with averaged
with Planck cell basis C(t ) = −〈x| [ p̂(t ), p̂(0)]2 |x〉; the other
is our OTOC C(t ) = −〈x| [P̂(t ), P̂(0)]2 |x〉. The results are
shown, respectively, in Figs. 5(a) and 5(b). The Planck cell
basis is |x〉 = |Q = 0.5, P = 0.5〉.

The classical Lyapunov exponent for this system with dis-
cretized time domain can be computed with the Jacobian of
the map. With the equation of[

δpn+1

δqn+1

]
=

[
1 K cos 2πqn

1 1 + K cos 2πqn

][
δpn

δqn

]
, (C3)

the Lyapunov at each time can be obtained by the logarithm
of eigenvalues of Jacobian. In this case, we take the average
largest of Lyapunov during the first six kicks (noting the initial
point is at the zeroth kick) is of λ̄ ≈ 1.35.

APPENDIX D: LMG MODEL AND ITS MEAN-FIELD
THEORY

We consider a two-mode interacting Bose gas with the
following second quantized Hamiltonian:

Ĥ = 1

2
(â†

1â0 + â†
0â1) + ξ

2N
(â†

1â1 − â†
0â0)2. (D1)

Its mean-field theory can be obtained with the coherent path
integral,

U (z∗
f , t f ; zi, ti ) =

∫
DzDz∗eiS/h̄, (D2)

in which the action S = ∫ t f

ti
dt (ih̄z∗ż − 〈z| Ĥ |z〉) with the

coherent state |z〉 = ez0 â†
0+z1â†

1 |0〉 . S/N should be a O(1) quan-
tity; we then rewrite the propagator as U = ∫

ei(N/h̄)(S/N ).
Obviously the effective Planck constant is h̄/N . Then with
the substitution z → x

√
N and letting h̄ = 1, the mean-field

equation of motion can be obtained with the method of steep-
est gradient (note the constraint of |x0|2 + |x1|2 = 1),

i
d

dt

[
x0

x1

]
= 1√

N

δ

δz∗ 〈z| Ĥ |z〉 =
[
ξ (|x0|2 − |x1|2) + ξ/2N 1/2

1/2 −ξ (|x0|2 − |x1|2) + ξ/2N

][
x0

x1

]
. (D3)

For a mean-field state (x0, x1), its corresponding quantum
state is

|�(x0, x1)〉 = 1√
N!

(x0â†
0 + x1â†

1)N |0〉 . (D4)

With the transformation of p = 1
2 (|x0|2 − |x1|2), q =

arg x1 − arg x0, one can find that this system is a Hamiltonian
system with Hamiltonian (up to the order of 1/N),

H (q, p) =
√

1/4 − p2 cos q + 2ξ p2. (D5)

The saddle point appears at (q∗, p∗) = (π, 0) when ξ =
−2, and the classical Lyapunov exponent can be determined
by linearizing the canonical equation q̇ = ∂pH, ṗ = −∂qH
near the saddle point,[

δ̇q
δ̇p

]
=

[
∂2H
∂q ∂ p

∂H
∂ p2

− ∂2H
∂q2 − ∂2H

∂q ∂ p

][
δq
δp

]
. (D6)

The matrix is

[
∂2H
∂q ∂ p

∂H
∂ p2

− ∂2H
∂q2 − ∂2H

∂q ∂ p

]∣∣∣∣∣
(q,p)=(π,0)

=
[

0 4ξ + 2
−1/2 0

]
, (D7)

which has the spectrum of ±√
3 when ξ = −2, that is, our

Lyapunov exponent for this saddle point.
The operator corresponding to p is

p̂ = (â†
0â0 − â†

1â1)/2N. (D8)

Its eigenstates is of |s, N − s〉 = 1√
s!(N−s)!

â†s
0 â†N−s

1 |0〉 with

p̂ |s, N − s〉 = −N − 2s

2N
|s, N − s〉 . (D9)

033239-6



MICROSCOPE FOR QUANTUM DYNAMICS WITH PLANCK … PHYSICAL REVIEW RESEARCH 3, 033239 (2021)

FIG. 6. The LMG model in the classical limit. (a) The energy
contours for the classical Hamiltonian in the phase space. (b) The
difference between the time evolution for the quantum system at
N = 1681 and the classical one. �(t ) measures the L2 distance
between quantum expectation value of macroscopic operators and
the classical trajectory at time t .

1. Phase-space basis for the LMG model

For systems, such as the LMG model with the finite dimen-
sion of the Hilbert space, the definition in Eq. (2) needs to be
modified. According to Appendix A, we use eigenstates of p̂.
The phase space is divided into L × L cells. The dimension
of Hilbert space is D = N + 1 = L2. Letting L = 2m + 1 be
an odd number, the eigenstates of p̂ is {|p = n/N〉}2m2+2m

n=−2m2−2m.
Then the basis function for the quantum phase-space basis
reads

|Q, P〉 = 1√
L

m+PN∑
n=−m+PN

∣∣∣p = n

N

〉
e−iNQp, (D10)

with lattice points (Q, P) = (2πn1/L, Ln2/N ) in which n1 ∈
{0, . . . , L − 1} and n2 ∈ {−m,−m + 1, . . . , m}. These states
are orthonormal,

〈Q′, P′| Q, P〉 = 1

L

∑
n,n′

δn,n′ exp

[
−iN

(
Qn

N
− Q′n′

N

)]

= 1

L
δP,P′

m+PN∑
n=−m+PN

e−in(Q−Q′ )

= δP,P′δQ,Q′ . (D11)

Since the effective Planck constant is proportional to 1/N for
this system, there is also the classical limit, such as Eq. (4).

2. Classical limit of the LMG model

The energy contour plot of the classical Hamiltonian of the
LMG model by Eq. (D5) is shown in Fig. 6(a). The saddle
point is at (q∗, p∗) = (π, 0). We consider an initial state at
|Q = π, P = 0〉. We let it evolve according to the second
quantized Hamiltonian and the mean-field Hamiltonian, re-
spectively. To compare them, we compute the expectation
values,

〈Â(t )〉 = 〈Q = π, P = 0| eiĤt Âe−iĤt |Q = π, P = 0〉 ,

(D12)
where Â is either Q̂ or P̂. We finally compute the difference,

�(t ) =
√

[q(t ) − 〈Q̂(t )〉]2 + [p(t ) − 〈P̂(t )〉]2, (D13)

where [q(t ), p(t )] is the classical trajectory beginning with
[q(0) = q∗ − 2π/L, p(0) = p∗]. This little shift is necessary
because the saddle point is a fixed point for the classical
dynamics. The time evolution of �(t ) is shown in Fig. 6(b)
where we find that before the finite time tE ≈ 1.5 it is close
to zero and it grows rapidly after that. In this sense, tE is
the Ehrenfest time for this saddle point. In the main text, our
discussion of the exponential growth of the OTOC is before
this characteristic time.

APPENDIX E: INVERTED HARMONIC OSCILLATOR

The Hamiltonian of an inverted harmonic oscillator reads

H (q, p) = 1
2 (p2 − q2). (E1)

By the same analysis above, it has a saddle point at (q∗, p∗) =
(0, 0) with energy 0, whose Lyapunov exponent is λC = 1. In
the quantum regime, the dynamics of the wave function obeys
the Schrödinger equation,

ih̄
∂ψ

∂t
= − h̄2

2

∂2ψ

∂q2
+ V (q)ψ (q). (E2)

FIG. 7. Inverted harmonic oscillator with h̄ = 0.0005. (a) The classical energy contours in phase space. A saddle point is at (q∗, p∗) =
(0, 0) with the classical Lyapunov exponent λC = 1. (b) The growth of the OTOC of −Tr ρ̂T [q̂(t ), q̂(0)]2 with ρ̂T = e−Ĥ/T /Tr e−Ĥ/T and
T = 0.1. (c) The growth of the OTOC of C(t ) = − 〈Q = 0, P = 0| [Q̂(t ), Q̂(0)] |Q = 0, P = 0〉. The exponential growth of these two OTOCs
are both twice the classical Lyapunov exponent.
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Here we add a hard wall to the potential so that q is confined
by

V (q) =
{−q2/2, q ∈ [−1/2, 1/2],
∞, otherwise.

(E3)

This modification will not change the dynamics near the sad-
dle point. Different from the LMG model, inverted harmonic
oscillator has an infinite-dimensional Hilbert space. Numer-
ically, we need a cutoff for momentum, which is related to
the coordinate resolution. Here, we choose h̄ = 0.0005 with
the momentum cutoff at |p| � 1 = pmax, the coordinate is
discretized by interval δx ≈ 0.0003. The size of Planck cells

is �q = √
2π h̄ ≈ 0.056. This finite shift along q diverges

exponentially and in order to the numerical accuracy of op-
erator and correlation function, we can only consider the
time evolution at the beginning. In Figs. 7(b) and 7(c), we
illustrate the growth of the OTOC of −〈[q̂(t ), q̂(0)]2〉T and
−〈Q = 0, P = 0| [Q̂(t ), Q̂(0)]2 |Q = 0, P = 0〉. We choose
T = 0.1 so that there are 80% cumulative probabil-
ity of the states of energy lower than 0.05, i.e., most
contributions are made by the region near the sad-
dle point. It is clear that the growth of these two
OTOCs are both exponential with the classical Lyapunov
exponent.
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