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Wannier basis method for the Kolmogorov-Arnold-Moser effect in quantum mechanics
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The effect of the Kolmogorov-Arnold-Moser (KAM) theorem in quantum systems is manifested in dividing
eigenstates into regular and irregular states. We propose an effective method based on the Wannier basis in
phase space to illustrate this division of eigenstates. The quantum kicked-rotor model is used to illustrate this
method, which allows us to define the area and effective dimension of each eigenstate to distinguish quantitatively
regular and irregular eigenstates. This Wannier basis method also allows us to define the length of a Planck cell
in the spectrum that measures how many Planck cells the system will traverse if it starts at the given Planck
cell. Moreover, with this Wannier approach, we are able to clarify the distinction between the KAM effect and
Anderson localization.

DOI: 10.1103/PhysRevE.100.052206

I. INTRODUCTION

There are two contrasting types of motion in classical
dynamics. The first type is regular orbits in integrable sys-
tems, where there exist N independent conserved quantities
(N is the degree of freedom) that restrict motion to an
N-dimensional torus in phase space [1]. The second type
is irregular motion in chaotic systems, where most orbits
explore almost all points in a (2N − 1)-dimensional energy
surface in the sense of ergodicity and mixing [2]. According
to the well-known Kolmogorov-Arnold-Moser (KAM) theo-
rem [3–5], there is a smooth crossover from an integrable
system to a chaotic system. Specifically, Kolmogorov, Arnold,
and Moser considered a Hamiltonian of the form H = H0 +
εH ′, where H0 is integrable. They found that a subset of the
torus solutions under H0 is deformed and survives under a
sufficiently small perturbation εH ′, while motion near the
unstable tori is chaotic and fills regions with dimensionality
2N − 1. As a result, the phase space is divided into integrable
and chaotic regions, with the measure of the latter growing
with ε.

As classical dynamics is the semiclassical limit (h̄ → 0) of
quantum dynamics, one expects similar KAM effects in quan-
tum mechanics. There has been a great deal of work extending
KAM effects to quantum systems [6–14]; in particular, KAM
effects in quantum many-body systems have recently become
of interest [13,14]. In this paper we focus on cases that have
classical limits. In these systems, previous studies have shown
that quantum KAM effects are manifested in eigenenergies
and eigenfunctions. The eigenenergies and eigenfunctions of
KAM-type systems have two parts: a regular part and an irreg-
ular part [15–19]. In particular, to quantitatively understand
regular and irregular eigenfunctions, there have been serious
efforts to compare quantum eigenfunctions to classical orbits
in phase space using either the Wigner distribution [17,18] or
Husimi distribution [20–22].

In this work we propose a different method to capture the
quantum KAM effect, i.e., the division of regular and irregular
eigenstates. In our approach, we divide the phase space into
Planck cells and assign a Wannier function to each Planck
cell [23–25]. These Wannier functions form an orthonormal
and complete basis and allow us to project a wave function
unitarily to phase space. With this unitary projection, we are
able to define for every eigenfunction an area which measures
how much phase space the eigenfunction occupies in the
phase space. We are also able to define an effective dimension
for every eigenfunction. Our numerical results show that the
effective dimension of an irregular eigenfunction is the same
as the phase space, while a regular eigenfunction has a lower
dimension. We are also able to define a length for each Planck
cell by projecting the Wannier basis back to the eigenstates.
Using numerical evidence, we argue that this length measures
how much phase space the long-time quantum trajectory will
traverse when starting from the given Planck cell.

We illustrate our method using the quantum kicked ro-
tor (QKR) model, whose classical counterpart, the classical
kicked rotor (CKR) [26], is one of the simplest models
governed by the KAM theorem. We first consider the case
of h̄e/2π being a rational number, where h̄e is the effective
Planck constant. Then we extend our discussion to generic h̄e

and show the distinction between KAM effects and Anderson
localization.

II. THE QKR MODEL AND WANNIER BASIS APPROACH

A. The QKR model

The dimensionless Hamiltonian of the QKR can be written
as [25]

Ĥ = p̂2

2
+ K cos x̂

+∞∑
j=−∞

δ(t − j), (1)
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where p̂ is the dimensionless angular momentum operator, x̂
is the angular coordinate operator, t is dimensionless time,
and K is the kicking strength. In the coordinate representa-
tion, p̂ = −ih̄e(∂/∂x), where h̄e is the dimensionless effective
Planck constant. The dimensionless Schrödinger equation is
ih̄e(∂/∂t )|�〉 = Ĥ |�〉. Note that for a real rotor with a mo-
ment of inertia I and driving period T , the effective Planck
constant is given by h̄e = h̄T/I .

The evolution operator over one period is

Û = exp

(
− i

2

p̂2

h̄e

)
exp

(
− i

h̄e
K cos x̂

)
. (2)

For this system, the momentum basis 〈x|n〉 = einx (n is an
integer) is the most convenient. The matrix elements of Û are
given by

Un′n ≡ 〈n′|Û |n〉 = (−i)n−n′
Jn−n′

(
K

h̄e

)
exp

(
− in′2h̄e

2

)
, (3)

where Jn−n′ (K/h̄e) is a Bessel function of the first kind. The
eigenstates of the Floquet operator Û in this periodically
driven system play the same role as energy eigenstates in a
time-independent system.

In the following discussion, unless specified otherwise,
we focus on the case that h̄e/2π is rational, that is, h̄e =
2πM/N , where M and N are coprime positive integers [27].
This is called quantum resonance [28]. In this work, for
simplicity, we assume that N is even. For even N , we find that
Un+N�,n′+N� = Unn′ (l = 0,±1, . . .), which reflects a transla-
tional symmetry in p space (see Appendix A for details). This
means that an eigenstate |φ〉 of the unitary operator Û must be
of the form of Bloch states

φ(s + N�) ≡ 〈s + Nl|φ〉 = e−ilθφθ (s), 0 � θ < 2π, (4)

where s = 1, . . . , N ; l = 0,±1, . . .; and θ is a Bloch wave
vector along p. This shows that all eigenstates are extended
in p space, and thus have an infinite expectation value of
kinetic energy. Moreover, φθ (s) is the eigenstate of an N × N
matrix Vθ ,

N∑
s′=1

Vθ (s, s′)φθ (s′) = e−iωφ φθ (s), (5)

where ωφ is the quasienergy of |φ〉 and

Vθ (s, s′) ≡
+∞∑

�′=−∞
Us,s′+N�′e−i�′θ . (6)

This suggests that the Hilbert space can be reduced nat-
urally to finite dimensions without truncation, which is one
of the benefits of the resonance condition. Our results have
little dependence on the Bloch wave vector θ , which is also
shown in [27]. Therefore, we will always choose θ = 0 and
denote Vθ simply by V and φθ by φ. The second benefit
with the resonance condition is that the quantum phase space
is naturally constructed, while there is some insignificant
ambiguity when h̄e is generic, which we will see in the next
section.

B. Construction of quantum phase space

In order to compare the quantum dynamics with its clas-
sical counterpart, we construct a quantum phase space. This
is accomplished by dividing the classical phase space into
Planck cells and assigning a Wannier function to each Planck
cell [23–25]. These Wannier functions are localized in their
corresponding Planck cells and form a complete basis for
the Hilbert space. In this work, we follow the method in
Ref. [25]. Suppose N = NxNp, where Nx and Np are integers.
The Wannier function is constructed as

|X ,P〉 = 1√
Nx

Nx∑
n=1

exp

(
−i

2πXn

Nx

)
|n + PNx〉, (7)

where X = 0, 1, . . . , Nx − 1 and P = 0, 1, . . . , Np − 1. It is
straightforward to show that the new basis is orthonormal and
complete. From Eq. (7) it is clear that |X ,P〉 is localized in p
space. Moreover, it is also localized in x space because its x
representation is given by

〈x|X ,P〉 = 1√
2πNx

sin(Nxx/2)

sin
(

x
2 − π X

Nx

)
× exp

[
i

2
(2PNx − Nx + 1)x − iπ

X
Nx

]
, (8)

whose norm is plotted in [25].
Thus, any quantum state |ψ〉 has a phase-space repre-

sentation |ψ〉 = ∑ |X ,P〉〈X ,P|ψ〉 and PX ,P = |〈X ,P|ψ〉|2
is the probability for |ψ〉 to be in Planck cell (X ,P ). We
emphasize that this basis can be constructed as long as one has
the classical action-angle pairs (p, x), where x has a periodic
boundary condition. If the natural coordinate of the classical
system is not the angle variable, one can also numerically ob-
tain an orthonormal and complete basis of Wannier functions
efficiently [24].

If we push the limit Nx, Np → ∞ keeping M constant, we
get an unlimited resolution in the phase space h̄e → 0; it can
be proved that the quantum dynamics will be reduced to the
standard map for the CKR [25], that is, 〈X ,P|V̂ |X0,P0〉 will
vanish unless

P̄ = P̄0 + K

2πM
sin(2πX̄0), (9)

X̄ = X̄0 + MP̄, (10)

where X̄ = X /Nx ∈ [0, 1] and P̄ = P/Np ∈ [0, 1]. Taking
P̄ ′ = MP̄ , one can see that the map for the pair (P̄ ′, X̄ ) is
exactly the standard map in the CKR. The effect of M is to
divide the phase space (0 < X̄ < 1, 0 < P̄ < 1) into M phase
spaces of the standard map along the P̄ direction. Each of the
M phase spaces will be referred to as a sub-phase-space in this
paper.

C. Area and effective dimension of eigenstates

In the CKR model, the Hamiltonian is nonintegrable as
long as K is nonzero, but even in the region 1 < K < 5, there
is still a finite portion of quasiperiodic trajectories surviving
under the strong kicking strength. Under these K , the classical
phase space is divided clearly into two kinds of regions:
some small integrable islands and a large chaotic sea [29].
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If an initial state lies in the chaotic region, it will explore
almost everywhere in the chaotic sea during its long-time
dynamics. On the contrary, if an initial state lies on one
integrable island, it will remain on one trajectory which forms
a one-dimensional line inside the integrable island. Thus we
can tell whether a trajectory is integrable or chaotic by its area
in the phase space. In practice, we divide the phase space into
Nc × Nc cells and define the coarse-grained area of a trajectory
by the number of cells passed through by the trajectory. Then
the area of a chaotic trajectory will be proportional to N2

c ,
while that of an integrable trajectory will be proportional to
Nc, which gives a rigorous division in the limit Nc → ∞.

As the quantum phase space is naturally coarse grained by
Planck cells, we can define the area of an eigenstate, which
serves as a criterion to distinguish integrable and chaotic
eigenstates. We define the area A of a given state |ψ〉 as

A(|ψ〉) =
⎛
⎝∑

X ,P
|〈X ,P|ψ〉|4

⎞
⎠

−1

. (11)

It is clear that each Wannier basis has area A(|X ,P〉) = 1;
if |ψ〉 is equally distributed in Nψ Planck cells while it has
no overlap with other cells, its A will be equal to Nψ . Thus,
this definition can reflect the extent of expansion of the state
in the quantum phase space. Note that this quantity is called
the inverse participation ratio, defined in a slightly different
context [30–34].

We expect, in the semiclassical limit Nx, Np → ∞ with
Nx/Np constant, A ∝ N = NxNp for chaotic eigenstates and
A ∝ √

N for integrable ones. Since h̄e ∝ 1/N , we define the
effective dimension of each eigenstate φ,

Deff (φ) = −2 lim
h̄e→0

lnA(φ)

ln h̄e
, (12)

which will be close to 1 for integrable eigenstates and 2 for
chaotic ones. We note that although A is dependent on the
construction details of phase space, Deff is universal. Instead
of looking at the Husimi distribution of each eigenstate to
determine which type that state belongs to, we can make the
discrimination directly from the value of its area or effective
dimension by means of the Wannier phase space, which
enables us to make the classification of all eigenstates, just
as in classical mechanics, where a single Poincaré section can
depict the behavior of all orbits.

In the definition of Deff , one needs to relate eigenstates at
different h̄e. This is not straightforward, as the number of all
eigenstates varies with h̄e. To relate eigenstates, we sort all
eigenstates by their area and get the index �A(φ) ∈ {1, . . . , N}
for each φ. Then we label each φ by its normalized position
�φ ≡ �A(φ)/N ∈ [0, 1]. Finally, two states at different h̄e are
regarded as the same eigenstate if they have the same �φ .

III. MANIFESTATION OF THE KAM EFFECT IN THE QKR

A. Quantum resonance: h̄e = 2π/N2
x

In this section, we present our main results using the
Wannier basis to investigate the classification of eigenstates in
the system. We first consider the simplest case h̄e = 2π/N2

x .

(a) (b)

FIG. 1. Phase-space representation of (a) an integrable eigenstate
and (b) a chaotic eigenstate at K = 2 and Nx = Np = 128. The value
of each cell is |〈X ,P|φ〉|2, where |φ〉 is the eigenstate.

As expected, there are two types of eigenstates, and two
examples are shown in Fig. 1.

We calculate the area A for each eigenstate, and there is a
sharp step when A is plotted as a function of the eigenstate
index �φ [see Fig. 2(a)]. The step gets sharper when Nx is
increased or, equivalently, when h̄e is decreased. This sharp
step defines a critical value �c

φ . One can roughly say that
the eigenstates with �φ < �c

φ are integrable and those with
�φ > �c

φ are chaotic. Moreover, one expects that the area at
�φ < �c

φ is A(φ)/N ∝ 1/Nx [see Fig. 2(b)], while A(φ)/N
tends to a constant at �φ > �c

φ .
The effective dimension Deff is also calculated and is

plotted in Fig. 2(d). As expected, Deff = 1 for eigenstates
below �c

φ and Deff = 2 for eigenstates above �c
φ . However,

near �c
φ , Deff deviates from both 1 and 2, which may indicate

the existence of hierarchial states, described in Ref. [22].
These states correspond to classical orbits which are trapped
in the vicinity of the hierarchy of integrable islands for a long

(a) (b)

(c) (d)

FIG. 2. (a) Plot of A(φ) of all eigenstates at different Nx . (b) Plot
of A(φ) at �φ = 0.2 for different Nx . (c) Logarithmic fitting for
five typical �φ . (d) Effective dimension Deff of all eigenstates �φ ,
where Deff is calculated from the slope of the logarithmic fitting. The
parameters are h̄e = 2π

N2
x

and K = 2.
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(b)(a)

FIG. 3. (a) Length L/N of each Wannier basis. (b) Sorted area
A/N of each eigenstate (red solid line), sorted L/N of each Wannier
basis (dark blue dotted line), and long-time area Aorbit/N of them
(light blue solid line). Similar to how eigenstates are sorted and
labeled by �φ , each Wannier basis is sorted by its length L and is then
labeled by �W ∈ [0, 1]. The parameters for both figures are K = 2
and Nx = Np = 128.

time but will finally leak into the chaotic sea. These states will
disappear when h̄e → 0 [22].

We have projected unitarily one set of basis states (eigen-
states) to another (Wannier basis), which gives information
about how many Planck cells each individual eigenstate oc-
cupies. We can reverse the unitary transformation and expand
the Wannier basis in terms of the eigenstates; the expansion
coefficients tell us not only how the Wannier basis forms the
eigenstates, but more importantly how an initial state localized
in the phase space will evolve for a long time. To illustrate this,
we define the length L of a Planck cell |X ,P〉 as

L =
⎛
⎝∑

φ

|〈X ,P|φ〉|4

⎞
⎠

−1

, (13)

which measures how much phase space |X ,P〉 occupies
in the spectrum. We have computed L for each Wannier
function |X ,P〉, and the results are plotted in Fig. 3(a),
which resembles the classical Poincaré section that is divided
into integrable and chaotic regions. Specifically, it is those
Wannier bases in the classical integrable region that have
small L, while the others in the classical chaotic region have
large L.

Interestingly, the length L of a Planck cell |X ,P〉 in fact
also indicates how many Planck cells the system will explore
dynamically if it starts at |X ,P〉. To see this, we define the
long-time area for a Planck cell |X ,P〉 as

Aorbit =
⎛
⎝

〈 ∑
X ′,P ′

|〈X ′,P ′|V nT |X ,P〉|4

〉
nT

⎞
⎠

−1

. (14)

Here 〈·〉nT means taking the average of nT , the number of
periods. In practice, we use a diagonal ensemble to calculate
this value (see Appendix B for details). In Fig. 3(b) we
compare the L of each Wannier function |X ,P〉 (dark blue
dotted line) with its long-time area (light blue solid line).
The sorted area of eigenstates (red solid line) is also plotted.
The figure clearly shows that these three curves are close
to each other, especially in the integrable part. These results

(a) (b)

FIG. 4. (a) Area of each eigenstate (solid line) and coarse-
grained area of classical trajectories (dashed line). (b) Demarcation
point �c

φ for classical and quantum cases. Here �c
φ is obtained by

A(�c
φ ) = 0.018N and h̄e = 2π/214.

indeed show that the length L of a given Planck cell |X ,P〉
measures how much phase space it will explore dynamically.

We now use the Wannier basis to study how the KAM
effect breaks down for increasing K . Since the QKR be-
comes more chaotic as the kicking strength K increases, one
expects that the critical value �c

φ decreases and eventually
becomes zero. This is indeed the case as shown in Fig. 4,
where we have also compared these results to their classical
counterparts. For the classical results, we divide the phase
space into N = 100 × 100 cells, choose 104 random initial
points, and evolve a long enough time (nT = 106 kicks). Then
each trajectory contains nT points. For each trajectory, A is
calculated similarly to the definition in the quantum case, A =
[
∑

j (n j/nT )2]−1, where n j is the number of points in the jth
cell. There is great consistency between the quantum results
and the classical results. There are also differences. First of
all, the saturation value of the classical A is much larger
and close to the area of the chaotic sea in the phase space,
which indicates that the chaotic sea is classically ergodic.
The saturation value of the quantum A is smaller; this is
due to the fact that the probability distribution of chaotic
eigenstates on the phase space has large fluctuations [35].
Second, the classical demarcation point �c

φ differs from its
quantum counterpart, which means there are more integrable
eigenstates in the QKR than integrable trajectories in the
CKR, especially when K is small. This is because there are
hierarchial states which are supported by the chaotic region
but behave like integrable states, as h̄e is finite. Moreover, in
the CKR the hierarchial regions of integrable islands are larger
with smaller K .

B. Generic h̄e and Anderson localization

In generic cases, h̄e/2π is irrational and the matrix U
cannot be reduced to a finite one. However, we can build a
series of rational numbers M1/N1, M2/N2, . . ., which has an
irrational number h̄e/2π as its limit. For each j, we have
a resonant matrix Uj with effective Planck constant h̄e, j =
2πMj/Nj , and we can do the previous reduction and construct
the Wannier phase space. The properties of the system with
the original h̄e are approximated by increasing j.
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(a)
(b)

(c)

FIG. 5. (a) Area A of eigenstates for each j. (b) Rational approx-
imation of generic h̄e. For each j, δh̄e ≡ |h̄e − h̄e, j |. (c) Area A at
φ = 0.5, which saturates when N → ∞. The parameters are K = 2,
Nx = 26, and � = 1/

√
2; the index j is omitted.

Without loss of generality, we let h̄e = 2π/(Nx + �)2,
where Nx is an even integer and � ∈ [−1, 1) is irrational.
Then we construct a series {Mj/NxNp, j} such that the se-
ries {Mj/Np, j} approaches Nx/(Nx + �)2. For this series,
the quantum phase space has Nj = NxNp, j Wannier states
in total.

In Fig. 5 we plot the rational approximation of h̄e and the
area of eigenstates for each j. The area of integrable eigen-
states remains a small constant when N increases, because
each eigenstate is confined in one integrable island of one
sub-phase-space, which contains a constant number of Planck
cells. On the other hand, the area of chaotic eigenstates in-
creases with N when N is small and saturates when N is large
enough. The initial growth is consistent with the classical
version, in which the chaotic regions of each sub-phase-space
are connected and one point can transport freely in the chaotic
sea of the whole phase space. However, the effect of Anderson
localization comes in when N is sufficiently large [36], which
is a pure quantum effect and sets an upper bound of A. To be
specific, the localization length in p space of each eigenstate
is approximately nloc = 1

2 Dc/h̄2
e , where Dc is the classical

diffusion coefficient [37]. If N > nloc, although the chaotic
eigenstates are not confined in one integrable island, they are
localized in some part of the phase space, whose area is of the
order of nloc and independent of N .

For a one-step evolution matrix U with generic h̄e, we can
also simply set a large momentum cutoff ncut (� nloc) and
only consider those eigenstates which are localized in the cen-
ter of the whole p space. These states have a small truncation
error, and we are able to apply the Wannier basis analysis
to them. The quantum phase space can be constructed as
follows. Choose N = NxNp adjacent momentum eigenstates
|n0 + 1〉, . . . , |n0 + N〉, relabel them as |1〉, . . . , |N〉, and ap-
ply Eq. (7) to generate the Wannier basis which constitutes
the phase space. The ambiguity here is that the phase space
depends on n0, which is insignificant because the change of n0

only causes a slight displacement of Planck cells in the phase
space. In a similar manner, we can project the eigenstates

(a) (b)

(c) (d)

FIG. 6. Eigenstates of U with generic h̄e without reduction. After
diagonalization, we choose only ∼2 × 103 eigenstates φ whose
average momentum 〈n〉 ∼ 1.5 × 104, where the whole p space is
1 � n � 3 × 104. The quantum phase space is constructed by 3N2

x

adjacent momentum eigenstates near n ∼ 1.5 × 104, where Nx = 26,
h̄e = 2π/(Nx + �)2, � = 1/

√
2, and K = 2. (a) Plot of ln |〈n|φ〉|2.

(b) Area of eigenstates. The value of A is normalized by the projec-

tion of each eigenstate to the phase space: A(φ) = [
∑

X ,P |〈X ,P|φ〉|2]2∑
X ,P |〈X ,P|φ〉|4 .

(c) One typical integrable eigenstate in quantum phase space. (d) One
typical chaotic eigenstate in quantum phase space.

onto the phase space we have constructed. In Fig. 6 we show
that these eigenstates are also separated into integrable and
chaotic ones, which justifies that this structure of eigenstates
depends on neither the previous rational approximation nor
the reduction process.

IV. CONCLUSION

We have developed a method based on Wannier phase
space to approach the KAM effect in quantum systems. In
this approach, each Planck cell in the quantum phase space
is represented by a Wannier function; all the Wannier func-
tions together form a complete and orthonormal basis. With
the example of the QKR, this approach has been shown to
be quite powerful. First, it has led us to define the area
and effective dimension of eigenstates, which then give us
quantitative measures to divide all eigenstates into integrable
and chaotic classes. Second, it has allowed us to define the
length of each Planck cell, which measures quantitatively
how many Planck cells the system will traverse if it starts
at one Planck cell. Third, this approach is also used to clar-
ify the distinction between the KAM effect and Anderson
localization in the QKR. We have used this approach in
systems with a classical limit, and it is interesting to consider
whether it can be generalized to other quantum systems
like spin chains. This work complements our understanding
of the quantum-classical correspondence and may provide
insight into short-wavelength physics such as microcavity
photonics.
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APPENDIX A: QUANTUM RESONANCE IN THE QKR

1. Classical origin of translational invariance

The existence of quantum resonance in the QKR relies on
the emergence of a translational invariance in p space, which
can be understood in the classical limit [27]. The classical
kicked rotor is described by a pair of classical conjugate
variables (xc, pc). Its dynamics is an iterating map

p′
c = pc + Kc sin(2πxc), (A1)

2πx′
c = 2πxc + p′

c. (A2)

This map is invariant under the transformation pc → pc +
2πMc, where Mc is an integer. In the QKR, the angular
momentum pc is quantized, that is, pc = mh̄e. Thus the trans-
formation becomes mh̄e + 2πMc = m′h̄e, where m, m′, and
Mc are integers. It is clear that for the QKR to be invariant
under this transformation, h̄e/2π has to be rational.

2. Existence of Bloch states

We use here group theory to show the existence of the
Bloch states in p space in the QKR under the condition
Un+N�,n′+N� = Unn′ (l = 0,±1, . . .), that is, to prove Eqs. (4)–
(6). Let T be the operator that translates the system in p space
by N , T |n〉 = |n + N〉. One can prove that (T UT −1)nn′ =
Un−N,n′−N = Unn′ , indicating that the QKR has a translational
symmetry T in p space, similar to the translational symmetry
in x space for crystal. All operators of the type T k , where k is
an integer, form a symmetry group. Since it is Abelian, each
eigenstate |φ〉 of U is a one-dimensional irreducible repre-
sentation of the group. That suggests that T |φ〉 = e−iθ |φ〉 for
some θ ∈ [0, 2π ), which leads to Eq. (4).

Consider the eigenequation
∑

n′ Unn′φ(n′) = e−iωφ φ(n).
With Eq. (4) we have, for s = 1, . . . , N ,

e−iωφ φ(s) =
∞∑

n′=−∞
Usn′φ(n′)

=
N∑

s′=1

∞∑
l ′=−∞

Us(s′+Nl ′ )φ(s′ + Nl ′)

=
N∑

s′=1

∞∑
l ′=−∞

Us(s′+Nl ′ )e
−il ′θφ(s′). (A3)

This is just Eqs. (5) and (6).

APPENDIX B: LONG-TIME AREA

In this Appendix we provide the details of calculating the
long-time area of evolved states by a diagonal ensemble. Here
we consider a general initial state |ψ0〉 = ∑

φ aφ|φ〉, while
previous results are for the special case |ψ0〉 = |X ,P〉. Its
inverse area after nT periods is given by

A−1(nT ) =
∑
X ′,P ′

|〈X ′,P ′|U nT |ψ0〉|4

=
∑
X ′,P ′

∑
φ1,φ2,φ

′
1,φ

′
2

e
−inT (ωφ1 +ωφ2 −ωφ′

1
−ωφ′

2
)

× aφ1 aφ2 a∗
φ′

1
a∗

φ′
2
〈X ′,P ′|φ1〉〈X ′,P ′|φ2〉

× 〈X ′,P ′|φ′
1〉∗〈X ′,P ′|φ′

2〉∗. (B1)

Then one can take the average of nT ,

〈e−inT (ωφ1 +ωφ2 −ωφ′
1
−ωφ′

2
)〉nT

= δφ1φ
′
1
δφ2φ

′
2
+ δφ1φ

′
2
δφ2φ

′
1
, (B2)

by assuming that there is no degeneracy in the differences of
quasienergies, which is the case for the QKR. Finally, one gets
the diagonal ensemble value

A−1
orbit = 2

∑
X ′,P ′

⎛
⎝∑

φ

|aφ|2|〈X ′,P ′|φ〉|2

⎞
⎠

2

−
∑
X ′,P ′

∑
φ

|aφ|4|〈X ′,P ′|φ〉|4. (B3)
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