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Quantum Computing by Coherent Cooling
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Interesting problems in quantum computation take the form of finding low-energy states of (pseudo)spin
systems with engineered Hamiltonians that encode the problem data. Motivated by the practical possibility of
producing very low-temperature spin systems, we propose and exemplify the possibility to compute by coupling
the computational spins to a quantum coherent bath that serves as a heat sink. The quantum tunneling effect
provides additional cooling channels to accelerate the cooling process. We demonstrate both analytically and
numerically that this strategy can achieve a quantum advantage in the unstructured search problem.
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I. INTRODUCTION

Quantum computing can be implemented, conceptually,
using either quantum logic gates [1–4] or Hamiltonians [5,6].
Under broad assumptions, these two techniques are com-
putationally equivalent, abstractly [7,8], but each brings in
different methods and intuitions. Roughly speaking, the gate
approach is more familiar in the analysis of Turing machines
and practical digital circuits, while a Hamiltonian approach
is more familiar in the analysis of natural physical systems.
The quantum adiabatic approach to optimization problems
[6,9,10] is an outstanding example suggested by a physical
phenomenon, i.e., the preservation of quantum ground states
under adiabatic evolution; other examples include algorithms
inspired by resonance [11] and diffusion [12]. Physics can
also suggest possibilities for resources that are not usually
considered in the standard conceptual models, e.g., global
addressing of qubits by external fields or controlled coupling
to physically realistic heat sinks, as exemplified below.

The observation that many important computational prob-
lems can be encoded as the search for low-energy states
of explicit, deceptively simple Hamiltonians Hs is central to
applications of the adiabatic algorithm. One way to bring a
system to low energy, of course, is to couple it to an auxil-
iary low-temperature system. The production of (pseudo)spin
systems with very low temperature is a highly developed art
[13–17]. Putting those observations together, we are led to
consider the possibility of addressing computational prob-
lems by coupling systems whose ground states contain the
answer—“computational qubits”—to systems that have very
low temperatures—“bath qubits”—that act as an energy sink.

*wubiao@pku.edu.cn

The issue then arises whether this procedure can be performed
in a way that maintains a speed advantage of quantum over
classical computation. Here we demonstrate that it can, at least
in the context of the iconic Grover search problem [1,18–20].

II. COOLING WITH A QUANTUM BATH

A. General framework

Let us first describe the strategy of our approach. Our com-
puting scheme involves computational qubits and bath qubits.
The problem Hamiltonian Hs encodes the solutions of a given
problem in its ground states [21]. The bath Hamiltonian Hb is
usually an interacting spin system with trivial ground states,
so that it can be brought close to absolute zero temperature
readily. For example, one may choose

Hb = −J
∑

〈m,m′〉

(
σ̂ x

mσ̂ x
m′ + σ̂ y

mσ̂
y
m′ + σ̂ z

mσ̂ z
m′

)
, (1)

where J > 0 is the interaction strength and σ̂
x,y,z
m is the Pauli

matrix of the mth spin. The summation is over an arbitrary set
of qubit pairs 〈m, m′〉. This Hamiltonian has at least two trivial
ground states |00 · · · 0〉 and |11 · · · 1〉 (|0〉 for spin-down and
|1〉 for spin-up), which are easy to prepare. When the spins sit
on a one-dimensional chain with the nearest-neighbor inter-
action, it is the well-known Heisenberg XXX model [22–24],
and its spin-wave excitation can carry energy away from the
problem system [25–27]. There are many interacting spin
systems with trivial ground states [28].

We call our approach the quantum icebox algorithm, and
its total Hamiltonian is

H = Hs + Hb + HI, (2)
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where HI is the coupling between computational qubits and
bath qubits. 〈HI〉 has the same order of magnitude as 〈Hs〉,
which low order perturbation theory usually fails. There are
ns computational qubits and nb bath qubits, so the Hilbert
space size is Ns = 2ns for Hs and Nb = 2nb for Hb. Their
energy eigenequations are Hs |ψis〉 = Eis |ψis〉 and Hb |φ jb〉 =
Ejb |φ jb〉, respectively. The total Hilbert space of size Nc =
NsNb is spanned by the base |ψis〉 ⊗ |φ jb〉 ≡ |ψis , φ jb〉. Among
all |ψis〉’s and |φ jb〉’s, for clarity, we use |φgs〉 to denote the
unknown ground states of the problem system Hs, which are
the solutions of the problem, and |φgb〉 to denote the known
ground state of the bath Hb, which is easy to prepare. The
whole composite system is considered as a closed system
in this icebox algorithm, which is distinct from other open
systems with information loss in the bath. We set h̄ = 1 and
consider E and t as dimensionless variables in the following
discussion because they are irrelevant to time complexity,
which is our focus.

We intend to use the bath to cool down the problem system
and find its ground states |φgs〉. The bath is initialized in one
of its trivial ground states |φgb〉, so that it is at the absolute
zero temperature. The problem system can be initialized in an
arbitrary state that is easy to prepare. So, the full initial wave
function at t = 0 is

|�in〉 =
Ns−1∑
is=0

cis |ψis , φgb〉 , (3)

where cis is the superposition probability amplitude. Once
the interaction HI is turned on, the whole composite system
starts the evolution with |�〉 = e−iHt |�in〉 and the energy will
generally flow from the problem system to the bath. As a
result, the problem system is cooled and will get closer to its
ground state. If we measure the problem system at the end of
cooling, we will have the following probability for finding the
ground state |φgs〉 of the problem system Hs:

Pg =
Nb−1∑
jb=0

|〈φgs , φ jb |�〉|2. (4)

The aim of the icebox cooling algorithm is to make this
probability high in the shortest amount of time.

B. Toy model

To get oriented, let us briefly consider a toy example. The
system is a single spin coupled to the middle spin of a one-
dimensional spin chain,

Hs = Bŝz, Hi = λŝyσ̂
y
� nb

2 �, (5)

where B is the on-site energy, λ is the coupling strength, and
�nb/2� means that the biggest integer is smaller than or equal
to nb/2. The bath is a one-dimensional spin chain governed by
the Hamiltonian in Eq. (1) with the nearest-neighbor interac-
tion and periodic boundary condition.

The system spin is set in the excited state and the bath is set
in the ground state with all spins down. After the interaction
is turned on instantaneously, the energy begins to flow into
the bath, generating spin-wave excitations that carry away
energy from the problem system [29,30]. Numerical results

FIG. 1. (a) The ground-state probability of the system in Eq. (5).
(b) The color is the z direction component of each qubit in the bath. m
marks different qubits. Other parameters are ns = 1, nb = 13, J = 1,
B = 1, λ = 1, and |�in〉 = |es, gb〉.

are shown in Fig. 1. In Fig. 1(a), the probability of the system
in the ground state becomes larger with time. Meanwhile, the
energy spreads away from the middle of the chain as shown in
Fig. 1(b) (see Appendix A for an analytical approach).

III. UNSTRUCTURED SEARCH

Now we apply that general strategy to an unstructured
search. An unstructured search is a benchmark example
demonstrating a sharp difference between quantum and classi-
cal computers. To search M targets among N unsorted items,
the time complexity of a classical algorithm is O(N/M ). In
contrast, Grover’s algorithm on a quantum computer has a
time complexity of O(

√
N/M ) [31,32]. When our cooling

algorithm is applied to this search problem, we expect a time
complexity no better than O(

√
Nc/Nb = √

Ns ). The reason is
that all the Nb states |ψgs , φ jb〉’s are the targets among the total
Nc = NsNb states |ψis , φ jb〉 for the whole system.

In our quantum algorithm, all the search items are stored in
system qubits and encoded by states |is〉 where the mth system
qubit is in the state |i(m)

s 〉 (m = 0, 1, 2, . . . , ns − 1), with i(m)
s

being the binary digit of is. For simplicity, we consider the
case in which there is only one target, which is one of the |is〉.
We construct two Hamiltonians, respectively, for the problem
system and the bath as [5,9,11,33,34]

Hs = − |gs〉 〈gs| , Hb = − |gb〉 〈gb| . (6)

These two Hamiltonians have only two eigenenergies, respec-
tively, one for a nondegenerate ground state and the other
for highly degenerate excited states (see Fig. 2). The system
ground state |gs〉 encoding the target is unknown while the

FIG. 2. The diagram of the Hamiltonian H = Hs + Hb + HI for
unstructured search. The red bars are the energy levels of Hs. The
blue bars are the energy levels of Hb.
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bath ground state |gb〉 is known and can be assumed to be
|gb〉 = |000 · · · 0〉 without loss of generality. For the above
two Hamiltonians, their energy eigenstates are simply |ψis〉 =
|is〉 and |φ jb〉 = | jb〉, respectively. Our quantum algorithm
works to find the system’s ground state |gs〉 by coupling the
system to the bath.

To achieve a quantum advantage, one must be able to flip
the order of O(ns) qubits for the problem system coherently
together. This can be realized clearly with a nonlocal inter-
action. It can also be accomplished with coherently iterated
k-local interactions. We will show that both of them can out-
perform the classical algorithm.

A. Nonlocal interaction

Here we choose the following nonlocal interaction to cou-
ple the system to the bath:

HI = − |ξ 〉 〈ξ | , (7)

where |ξ 〉 = √
1/Nc

∑Ns−1
is=0

∑Nb−1
jb=0 |is, jb〉. Similar nonlocal

interactions can be found in Refs. [5,9,11,33,34] and their
justification can be found in Appendix B.

The initial state for the whole system is

|�in〉 = 1√
Ns

Ns−1∑
is=0

|is, gb〉 , (8)

where the bath is in the ground state. The dynamics is
confined in a subspace spanned by the following four
states: |ys, yb〉, |gs, yb〉, |ys, gb〉, and |gs, gb〉 with |ys〉 =√

1/(Ns − 1)
∑

is 
=gs
|is〉 and |yb〉 = √

1/(Nb − 1)
∑

jb 
=gb
| jb〉.

In other words, the Hamiltonian is effectively a 4 × 4 ma-
trix shown in Appendix C. In the limit of 1 � Ns, Nb �
Nc, this matrix can be diagonalized exactly. As |�in〉 =√

1/Ns |gs, gb〉 + √
(Ns − 1)/Ns |ys, gb〉, its time evolution is

|�〉 ≈ e−2it

√
1

Ns
|gs, gb〉

+ e−it

√
Ns − 1

Ns

[
Ns cos ωt + Nb

Ns + Nb
|ys, gb〉

+
√

NsNb(cos ωt − 1)

Ns + Nb
|gs, yb〉

+ i

√
Ns

Ns + Nb
sin ωt |ys, yb〉

]
, (9)

where the oscillation frequency is

ω ≈
√

1

Ns
+ 1

Nb
. (10)

We can substitute Eq. (9) into Eq. (4) and obtain

Pg ≈ 4NsNb

(Ns + Nb)2
sin4 ωt

2
. (11)

For the special case Nb = Ns, we have Pg ≈ 1 at t = π
√

Ns/2.
The time complexity of our algorithm is O(

√
Ns), which is as

good as Grover’s algorithm [1]. In general, the average time

needed to finish this algorithm is

T = π

max (Pg)tω
= π (Ns + Nb)1.5

4
√

NsNb
. (12)

When Nb = 0.5Ns, the required time is shortest with T =
2.04

√
Ns. When Nb � Ns, the time complexity is O(Ns),

which is similar to the classical algorithm. The reason is
that there are not enough high-energy states in a small bath
to absorb energy. When Nb  Ns, the time complexity is
O(Nb/

√
Ns) because the effective interaction becomes small.

B. Local interaction

Our cooling algorithm can also achieve speedup over the
classical algorithm with local interactions. We focus on the
case nb = ns. The two-local interaction is

HI = −λns

ns−1∑
m=0

ŝx
mσ̂ x

m, (13)

where ŝx
m and σ̂ x

m acts on the mth qubit of the problem sys-
tem and the bath, respectively. λns is the interaction strength.
limns→∞ λns × ns is a constant that makes 〈HI〉 and 〈Hs〉 the
same order of magnitude. This composite system can be
viewed as two parallel spin chains with pairwise coupling
(see Fig. 5).

The dynamics governed by H is a unitary evolution in a
Hilbert space of dimension Nc = NsNb = N2

s . Fortunately, it
can be decomposed into Ns independent dynamics with each
of them restricted in an Ns-dimensional sub-Hilbert space.
Each subspace Hν , which is marked by a binary string ν, is
spanned by states |is〉 ⊗ | jb〉 that satisfy the bitwise logical
operation ν = is ⊕ jb explained in Appendix D.

We still choose Eq. (8) as the initial state, where different
is’s belong to different subspaces Hvis

labeled by vis = is ⊕
gb. In a given subspace Hv js

( js is one of is’s), we can hide the
bath qubits and simplify the total Hamiltonian as (details for
derivation can be found in Appendix E)

Hjs = − |gs〉 〈gs| − | js〉 〈 js| − λns

ns−1∑
m=0

ŝx
m. (14)

The system described by the above Hamiltonian is a double-
well system in Fig. 3(a). It can be visualized as a particle living
on a hypercube of ns dimensions in Fig. 3(b). Each site of
this hypercube is represented by a state |is〉. Only two of these
sites, |gs〉 and | js〉, have lower on-site energy.

For this kind of system, the low-energy Hilbert space is
spanned by two wave packets |χg〉 and |χ j〉 localized near
|gs〉 and | js〉, respectively. This is verified by our numerical
computation. In our numerical computation, we expand the
interaction strength in the polynomial form

λns = γ1

ns
+ γ2

n2
s

+ γ3

n3
s

+ · · · . (15)

We then diagonalize numerically the Hamiltonian of Eq. (14).
As we expect that the two lowest eigenstates are of the form
(|χg〉 + |χ j〉)/

√
2 and (|χg〉 − |χ j〉)/

√
2 if j 
= g, we super-

pose them and obtain |χg〉. As shown in Fig. 3(c), we find that
|χg〉 is indeed localized and its localization will not decrease
as ns increases if γ1 � 1, γ2 � 1.16, and γm�3 = 0.
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FIG. 3. (a) One-dimensional schematic illustration of Hamilto-
nian Hjs . |χg〉 and |χ j〉 are the low-energy wave packets in the
wells. (b) Schematic of the ns-dimensional hypercube (placed on
a hypersphere). Each point represents one configuration of qubits
with the top point representing |gs〉. The color represents the Ham-
ming distance h of |is〉 from |gs〉 (red for smaller distance, blue for
larger distance). Yellow lines represent hopping between different
|is〉. (c) The actual wave function of one wave packet |χg〉 (blue dots)
reconstructed by diagonalizing Eq. (14). | js〉 locates at l j = 9 for
example. The number of qubits is ns = 18. The interaction strength
is γ1 = 1, γ2 = 1.16, and γm�3 = 0. The calculated well component
is |a0|2 = 0.8. The orange line is the median among the same h.

The two wave packets |χg〉 and |χ j〉 have the same on-
site energy. Their interaction strength decides the oscillation
frequency ωl j = | 〈χg| H |χ j〉 |, which is the evolution speed
from | js〉 to |gs〉. The Hamming distance between two binary
strings is the number of bits where they differ. We define the
Hamming distance between |gs〉 and | js〉 as l j , which ranges
from 0 to ns. The dynamics in the subspaces with identical
Hamming distance l j is exactly the same. As the effective
interaction decays with Hamming distance, i.e., ωl j+1 < ωl j ,
the evolution time from | js〉 to |gs〉 is longer for larger l j .

When the problem system evolves into |gs〉 through tun-
neling from the initial state of Eq. (8), it is cooled down by
the bath and our goal is achieved. It is clear that the larger
the Hamming distance l j , the longer it takes to get |gs〉. The
longest time occurs when l j = ns. However, to have a de-
tectable ground-state probability, we just need to wait until
half of the states with l j � �ns/2� evolve to |gs〉. On average,
the ground-state probability can thus be approximated as

Pg ≈ 1

Ns

⎛
⎝A0 +

� ns
2 �∑

l=1

Cl
ns

Al sin2 ωl t

⎞
⎠ ≈ Al

4
, (16)

where t is in the timescale regime 1/ω�ns/2� < t < 1/ω�ns/2�+1

and Al is the oscillation amplitude of a scale around 1. It
is clear that the ground-state probability is large enough for
detection and independent of ns.

The cooling speed is roughly decided by ω�ns/2�, which
is the energy difference of two lowest energy states in the
subspace. Figure 4 shows the dependence of the cooling

5 10 15 20
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FIG. 4. The oscillation frequency between | js〉 and |gs〉 with dis-
tance l j = �ns/2� according to Eq. (14). The blue dots are the exact
value from diagonalization whose slope is about −0.55. The inter-
action strengths γm’s are the same as Fig. 3. The slope of the orange
dashed line is −0.5 representing Grover’s algorithm. The slope of the
black dashed line is −1 representing the classical algorithm.

speed on the number of qubits ns. It is calculated by nu-
merically diagonalizing Eq. (14) with l j = �ns/2�. By fitting
the numerical result, we find that the cooling speed is about
O(N0.55

s ) with local interaction, which is close to Grover’s
algorithm [1].

C. Discussion and conclusion

We have presented two different cooling algorithms to do a
random search. In the first algorithm, the coupling between the
system and the bath is simple but nonlocal. The analytical so-
lution shows that its time complexity is O(

√
Ns). In the second

algorithm, the coupling is local. Our analysis and numerical
computation find that the time complexity is ∼O(N0.55

s ). Both
of the algorithms are parametrically faster than the classical
time complexity O(Ns). This is similar to the demonstration
that the quantum adiabatic algorithm (QAA) is better than
the conventional cooling [9,35] as argued in Appendix F.
Thus our cooling algorithm incorporates essentially quantum
features, and it differs from thermal cooling with a Markovian
bath both qualitatively and quantitatively.

IV. GENERAL DISCUSSION

We have proposed a general framework of quantum com-
puting by cooling a Hamiltonian system, whose ground states
encode the solutions of a given problem, with a fully quantum
bath in non-Markovian dynamics. This bath, which we call a
quantum icebox, is an interacting (psuedo)spin system with
trivial and easy-to-prepare ground states.

Here are the key features of our quantum icebox cooling
scheme:

(i) It is different from cooling with a Markovian thermal
bath. All the processes here are quantum coherent, enabling
quantum tunneling over a long Hamming distance.

(ii) As the bath has easy-to-prepare ground states, it can
be reset to zero temperature whenever necessary. We expect
that resetting occasionally, by removing noisy feedback, will
improve the success rate. This is a direction to be explored in
the future.
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(iii) A large density of states of the bath is favorable. The
result is that efficient quantum transitions occur when the final
state |ψi′s , φ j′b〉 has similar energy to the initial state |ψis , φgb〉,
namely Ei′s + Ej′b ≈ Eis + Egb . It is noteworthy that in the
standard formulation of combinatorial optimization problems
using penalty functions, the eigenenergies of Hs are integer
multiples of a single parameter . This consideration can
guide the design of baths with appropriate energy spectra.

(iv) The number of states in the bath should increase
rapidly with energy. This encourages the bath to absorb energy
from the problem system. This is satisfied in most many-body
systems, where higher energy can excite more quasiparticles.
If the quasiparticles are weakly interacting, the growth is
exponential.

(v) The total Hamiltonian need not change during exe-
cution of the quantum icebox algorithm. In contrast, QAA
requires drawn-out and extensive change of the Hamiltonian
during evolution, which requires external interventions intro-
ducing noise and decoherence.

Heat transfer has long been regarded as a stochastic
thermal process [36–38], which is usually solved in a Marko-
vian approximation, which is appropriate for infinitesimally
weak interactions. In these Markovian models, only low-
order transition is considered, while higher-order transitions
involving tunneling effects discussed in Appendix G are ab-
sent [39–42] or not analyzed [43]. As a result, a quantum
advantage cannot be achieved. It has been shown, within a
one-dimensional solvable model, that cooling with the Marko-
vian effect [44,45] has no speed advantage over the classical
algorithm [46]. Stronger interaction can bring distinct dy-
namics [45], but they are difficult to assess generically. In
Appendix H, we also compare our icebox algorithm with
the quantum adiabatic algorithm (QAA) [35] and a fix-point
quantum search [47], heat-bath algorithmic cooling (HBAC)
[48–52], and interaction-enhanced quantum computing [53].

Our simulation of a quantum icebox demonstrates that
cooling can occur coherently, and that it leads to a signifi-
cant quantum computational advantage in a simple benchmark
problem. (Other recent work also indicates that a non-
Markovian bath could improve the performance of a quantum
refrigerator [54].) In more complex optimization problems,
the presence of low-lying local minima is generic. It is not
implausible that weak coupling to a strongly ergodic bath
will induce effective interactions that enable the coupled com-
putational system to explore its state space thoroughly. This
important question deserves much further attention, and it is
the subject of ongoing research.
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APPENDIX A: SPIN-WAVE PROPAGATION
TRANSPORTING ENERGY

The spin-wave dynamics with the Hamiltonian Eq. (5) in
the main text can also be demonstrated in the single excited
mode approximation, where we consider just states |es, kg〉
and |gs, k〉, neglecting the states with multimagnon. |gs〉 and
|es〉 represent the ground state and the excited state of the
problem system, while |kg〉 and |k〉 represent the ground state
and the excited state of the bath with wave vector k. The
Hamiltonian becomes

H =
∑
k 
=kg

[Ek |gs, k〉 〈gs, k|

+ λk |gs, k〉 〈es, kg| + λ∗
k |es, kg〉 〈gs, k|], (A1)

where Ek = (Esg + Ebk ) − (Ese + Ebkg ) is the energy detun-
ing and λk is the coupling strength. The time-dependent wave
function is

|�〉 = bg |es, kg〉 +
∑
k 
=kg

bk |gs, k〉 , (A2)

where the probability amplitude satisfies the Schrödinger
equation with

i
dbg

dt
=

∑
k 
=kg

λ∗
kbk,

i
dbk

dt
= Ekbk + λkbg. (A3)

In the early time of evolution |λk|t → 0, bg ≈ 1. We can
decouple the equations and get [55]

bk ≈ λk

Ek
(e−iEkt − 1). (A4)

The probability amplitude for the two-level system in its ex-
cited state is

bg ≈ 1 − 2
∑
k 
=kg

|λk|2
E2

k

sin2 Ekt

2
. (A5)

In the position coordinate, the wave function is

φ ≈ bgeikgx +
∑
k 
=kg

bkeikx. (A6)

The phase difference between different bk changes with time,
and the wave function will spread out from x = 0.

APPENDIX B: NONLOCALITY OF HAMILTONIANS

The Hamiltonians used in quantum algorithms should be
physically plausible. This often means that the Hamiltonian
should be k-local, i.e., the interactions involve no more than a
fixed number k of qubits [7]. Although the three Hamiltonians
in Eqs. (6) and (7) in the main text are not k-local, they are
physically plausible, as we now explain.

In Grover’s algorithm, a single Grover iteration is UG =
Rξ Rg [20]. Rg = I − 2 |g〉 〈g| is the oracle operator for the
target |g〉. The oracle operator is given as part of the state-
ment in the problem. And Rξ = H⊗n

a (I − 2 |0〉 〈0|)H⊗n
a =

I − 2 |ξ 〉 〈ξ |, where Ha is the Hadamard gate and |ξ 〉 =√
1/N

∑N−1
j=0 | j〉.
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The Hamiltonians in Eqs. (6) and (7) in the main text can
be implemented with the Grover operation UG. For simplicity,
we consider the Hamiltonian dynamics U = e−iHt with H =
− |g〉 〈g| − |ξ 〉 〈ξ |. When the time evolution is discretized with
time step t = π and T = mt , we have [56]

U = e−iHT ≈ �m
j=1e−iπH ≈ �m

j=1UG. (B1)

Note that the circuit complexity for implementing the oracle
is O(n3) [57] and the time complexity is O(n2) [58], where
n = log2 N .

Furthermore, this nonlocal interaction can be achieved by
Mølmer-Sørensen (MS) interaction [34,59] or Rydberg atoms
[60].

APPENDIX C: EXACT HAMILTONIAN
FOR THE NONLOCAL MODEL

The total Hamiltonian is [Eqs. (6) and (7) in the main text]

H = − |gs〉 〈gs| − |gb〉 〈gb| − |ξ 〉 〈ξ | . (C1)

We expand it in terms of |ys, yb〉, |gs, yb〉, |ys, gb〉,
and |gs, gb〉 with |ys〉 = √

1/(Ns − 1)
∑

is 
=gs
|is〉 and |yb〉 =√

1/(Nb − 1)
∑

jb 
=gb
| jb〉. Its exact matrix is

H = − 1

Nc

⎛
⎜⎜⎜⎝

Nc − Ns − Nb + 1
√

(Nc − Ns − Nb + 1)(Nb − 1)
√

(Nc − Ns − Nb + 1)(Ns − 1)
√

Nc − Ns − Nb + 1√
(Nc − Ns − Nb + 1)(Nb − 1) Nc + Nb − 1

√
(Ns − 1)(Nb − 1)

√
Nb − 1√

(Nc − Ns − Nb + 1)(Ns − 1)
√

(Ns − 1)(Nb − 1) Nc + Ns − 1
√

Ns − 1√
Nc − Ns − Nb + 1

√
Nb − 1

√
Ns − 1 2Nc + 1

⎞
⎟⎟⎟⎠.

(C2)

If we just keep the leading terms in the limit of 1 � Ns, Ns �
Nc, it becomes

H ≈ − |ys, yb〉 〈ys, yb| − 2 |gs, gb〉 〈gs, gb|
− |ys, gb〉 〈ys, gb| − |gs, yb〉 〈gs, yb|

−
√

Ns

Nc
(|ys, yb〉 〈ys, gb| + |ys, gb〉 〈ys, yb|)

−
√

Nb

Nc
(|ys, yb〉 〈gs, yb| + |gs, yb〉 〈ys, yb|). (C3)

Its eigenenergies are

E0 = −2, (C4)

E1 = −1 −
√

Ns + Nb

Nc
, (C5)

E2 = −1, (C6)

E3 = −1 +
√

Ns + Nb

Nc
. (C7)

The corresponding eigenstates are

|�0〉 =

⎛
⎜⎝

0
0
0
1

⎞
⎟⎠, |�1〉 =

⎛
⎜⎜⎜⎜⎝

1√
2√
Ns

2(Ns+Nb )√
Nb

2(Ns+Nb )

0

⎞
⎟⎟⎟⎟⎠, (C8)

|�2〉 =

⎛
⎜⎜⎜⎜⎝

0

−
√

Nb
Ns+Nb√
Ns

Ns+Nb

0

⎞
⎟⎟⎟⎟⎠, |�3〉 =

⎛
⎜⎜⎜⎜⎝

− 1√
2√

Ns
2(Ns+Nb )√

Nb
2(Ns+Nb )

0

⎞
⎟⎟⎟⎟⎠. (C9)

The time-dependent wave function with initial condition
|�in〉 = √

1/Ns |gs, gb〉 + √
(Ns − 1)/Ns |ys, gb〉 is

|�〉 = e−iE0t

√
1

Ns
|�0〉 +

√
Ns − 1

Ns

×
√

Ns
2 (e−iE3t |�3〉 + e−iE1t |�1〉) − e−iE2t

√
Nb |�2〉√

Ns + Nb
.

(C10)

Expanding it, we obtain Eq. (9) in the main text.

APPENDIX D: EXCLUSIVE-OR

The module 2 addition “⊕” is also called the exclusive-OR
(XOR) operation for two Boolean variables, which is defined
as 0 ⊕ 0 = 1 ⊕ 1 = 0 and 0 ⊕ 1 = 1 ⊕ 0 = 1. For an integer
i, the relation with its binary digits i(m) is

i =
n−1∑
m=0

2mi(m). (D1)

For any two integers is and jb, v = is ⊕ jb is defined bitwise
as (see Fig. 5)

v(m) = i(m)
s ⊕ j (m)

b . (D2)

It can also be written as

v = is ⊕ jb =
n−1∑
m=0

2m
(
i(m)
s ⊕ j (m)

b

)
. (D3)

For example, 12 ⊕ 10 = 1100 ⊕ 1010 = 0110 = 6. There is
an inverse relation that jb = is ⊕ v if v = is ⊕ jb. We can
check that 12 ⊕ 6 = 1100 ⊕ 0110 = 1010 = 10.
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FIG. 5. Illustration of is ⊕ jb = ν. Red squares represent qubits
of the system; blue squares represent qubits of the bath; the vertical
lines represent the pairwise interaction ŝx

mσ̂ x
m between the system

qubits and bath qubits. The binary digits of ν are placed in circles
for clarity.

APPENDIX E: ANALYSIS OF THE LOCAL HAMILTONIAN

The Hamiltonian with local interaction is [Eqs. (6) and (13)
in the main text]

H = − |gs〉 〈gs| − |gb〉 〈gb| − λns

ns−1∑
m=0

ŝx
mσ̂ x

m. (E1)

The decomposition of its Hilbert space is possible due to the
parity between system qubits and bath qubits. For a pair of
states |is〉 and | jb〉, this parity is given by a number ν = is ⊕
jb, where ⊕ is a bitwise module 2 addition as illustrated in
Fig. 5. Since [ŝz

mσ̂ z
m, H] = 0, the parity number ν is conserved

during the dynamical evolution.
We define a sub-Hilbert space Hν , which is spanned by all

|is, jb〉’s satisfying is ⊕ jb = v. Because of jb = is ⊕ v, there
is one-to-one mapping between the system states |is〉 and the
bath states | jb〉 in each subspace Hν . Therefore, each Hilbert
space Hν is of dimension Ns. The subspace Hν is invariant
under the unitary transformation of the total Hamiltonian H .
As a result, the whole dynamical evolution is just a simple
summation of dynamics in each subspace Hν .

Therefore, we can independently investigate the dynamical
evolution within each subspace. In a given subspace Hv js

( js
is one of is’s), there are only two on-site energy terms in
Eq. (E1), and the total Hamiltonian is reduced to

Hjs = − |gs, jb〉 〈gs, jb| − | js, gb〉 〈 js, gb| − λns

ns−1∑
m=0

ŝx
mσ̂ x

m.

(E2)

In the subspace Hv js
, there is one-to-one mapping between |is〉

and | jb〉 via is ⊕ jb = v js . As a result, we can hide the bath
qubits and simplify the above Hamiltonian in the subspace as

Hjs = − |gs〉 〈gs| − | js〉 〈 js| − λns

ns−1∑
m=0

ŝx
m, (E3)

which is Eq. (14) in the main text.
The numerical results of evolution with Hamiltonian

Eq. (E1) are calculated. The probability of the ground state of
the problem system is shown in Fig. 6. Figure 6(a) displays the
oscillations of the ground-state probability with l j = �ns/2�,
and Fig. 6(b) shows the oscillations with l j = ns. Their oscil-
lation involves sinelike functions in different subspaces. The
period of (b) is larger than (a) because of the longer Ham-

0 1000 2000
0
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0.4
0.6
0.8

1(c)

-2.5 -2 -1.5
0

0.02
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0.06

0.08(d)

0 1000 2000
0

0.2
0.4
0.6
0.8

1(a)

0 1000 2000
0

0.2
0.4
0.6
0.8

1(b)

FIG. 6. The evolution with the Hamiltonian in Eq. (E1) with ns =
nb = 12. The interaction strength is γ1 = 1, γ2 = 1.16, and γm�3 =
0. Pg is the time dependent ground-state probability of the problem
system. For (a) and (b), the initial condition is |�in〉 = | js, gb〉 with
Hamming distance (a) l j = 6 and (b) l j = 12. (c) The initial state is
|�in〉 = √

1/Ns
∑Ns−1

js=0 | js, gb〉. (d) The Fourier transformation of (c).
The gray line shows the peaks contributed by different l j .

ming distance. The oscillations with l j = ns have the largest
timescale, which corresponds to the full thermal equilibrium.
The evolution with the initial state Eq. (8) in the main text
is shown in Fig. 6(c), where the increasing slope near t = 0
is seen to be similar to (a). This indicates that the problem
system can be cooled down considerably earlier than the equi-
librium between the bath and the problem system is reached.
Figure 6(d) is the Fourier transformation of (c). Peaks for
independent oscillations with different l j are clearly visible.

The wave packet |χg〉 located near |gs〉 of Eq. (14) can be
approximated analytically. We rearrange the basis and write
|χg〉 as

|χg〉 =
ns∑

h=0

Ch
ns∑

m=1

ah,m |ψh,m〉 , (E4)

where |ψh,m〉’s are rearranged |is〉’s with Hamming distance h
from |gs〉, so that |ψh=0〉 = |gs〉. m labels the different states
with the same h. The 2ns vertices of the hypercube can be
viewed as points on the surface of an ns-dimensional hyper-
sphere, as seen in Fig. 3(b) in the main text. There are Ch

ns

points located on the same latitude of the hypersphere, which
have the same h. When |χ j〉 is far from |χg〉 with l j  1, the
influence of |χ j〉 is so small that |χg〉 has rotation symmetry
with the coefficients independent of m, i.e.,

ah,m ≈ ah. (E5)

Numerically computed ah,m are shown in Fig. 3(c) in the
main text, where each blue point represents one ah,m. It is
clear from the figure that the Ch

ns
points with the same h are

nearly identical. They become visibly different only near the
location of | js〉, i.e., at h = 9 in this example. Most ah,m have
the same sign except some near | js〉. The interaction

∑ns−1
m=0 ŝx

m
only changes one qubit, so each point at the hth will interact
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with h points at the (h − 1)th and ns − h points at (h + 1)th as
shown by the yellow line in Fig. 3(b). If we neglect the term
− | js〉 〈 js| using a tight-binding approximation, the eigenequa-
tion for Eq. (14) can be written as

−hλns ah−1 + Vah − (ns − h)λns ah+1 = Eah, (E6)

where V = −1 if h = 0 and V = 0 if h � 1.
ah could be approached analytically using the iteration

method. We rewrite Eq. (E6) as

−hλns ah−1 + Vah − (ns − h)λns ah+1 = Eah, (E7)

where V = −1 if h = 0 and V = 0 if h � 1. We rewrite it as

(−1 − E )a0 − nsλa1 = 0,
(E8)−hλah−1 − Eah − (ns − h)λah+1 = 0 (1 � h � ns).

We define the ratio bh = ah/ah−1 and get

bh = hλ

1 + nsλb1 − (ns − h)λbn+1
. (E9)

With the self-consistent method, the above iteration becomes

b(m+1)
h = hλ

1 + nsλb(m)
1 − (ns − h)λb(m)

h+1

, (E10)

where the superscript is the order of approximation. If we set
b(0)

h = 0, we get

b(1)
h = hλ, (E11)

b(2)
h = hλ

1 + nsλ2 − (ns − h)(h + 1)λ2
, (E12)

b(3)
h = hλ

1 + nsλ2

1−(ns−2)λ2 − (ns−h)(h+1)λ2

1+nsλ2−(ns−h−1)(h+2)λ2

. (E13)

The corresponding energy is

E (1) = −1 − nsλ
2, (E14)

E (2) = −1 − nsλ
2

1 − (ns − 2)λ2
, (E15)

E (3) = −1 − nsλ
2

1 + nsλ2

1−(ns−2)λ2 − 2(ns−1)λ2

1−(2ns−6)λ2

. (E16)

We define a0 = 1/
√ℵ, where ℵ is the normalization factor.

The coefficient for h � 1 is

ah = 1√ℵ
h∏

m=1

bm. (E17)

The first-order approximation is

a(1)
h = 1√

ℵ(1)

h!

nh
s

≈
√

2πh

ℵ(1)

(
h

ens

)h

, (E18)

where the last term is obtained with the Stirling approxima-
tion. It is accurate only in the regime h � 1 and h/ns < 0.2.
By fitting the numerical data in Fig. 3(c) in the main text, we
find that the decay speed of ah is exponential in the regime
h/ns < 0.2 and inversely proportional to h in the regime
h/ns > 0.3.

0 1000 2000
-1

-0.5

0(a)

0 1000 2000
-1

-0.5

0(c)

0 1000 2000
-1

-0.5

0(b)

FIG. 7. The time-dependent energy variation according to
Eq. (C2). The parameters are Ns = Nb = 220. (a) The energy of
the problem system. (b) The coupling energy between the problem
system and the bath. (c) The energy of the bath.

APPENDIX F: COMPARISON TO
CONVENTIONAL COOLING

In conventional cooling, the interaction between the system
and the bath is limited to the interface. As a result, the interac-
tion energy 〈HI〉 is much smaller than both the system energy
〈Hs〉 and the bath energy 〈Hb〉. During the cooling process,
the total energy 〈Hs + Hb〉 can be approximately regarded as
conserved. In addition, the cooling process is usually compli-
cated. The quantum dynamics for the composite system, the
system plus the bath, is ergodic and irreversible.

Cooling has been developed in practice and generalized in
conception. The constraints discussed above are not essential.
For example, in laser cooling, as each atom in the gas interacts
with the photons from the laser, the interaction energy 〈HI〉 is
comparable to the system energy 〈Hs〉 [61,62]. Evaporative
cooling of atomic gases is more aggressive, and over 90% of
the system is removed after the cooling [62].

The quantum adiabatic algorithm (QAA) is also called
quantum annealing, a cooling process. During the annealing,
the bath only appears as a parameter in the Hamiltonian. After
QAA was proposed, it was immediately compared to con-
ventional cooling. Its quantum advantage was only confirmed
after the quantum adiabatic search algorithm was proposed
and shown to be as fast as Grover’s algorithm.

The quantum icebox algorithm proposed in this work is a
conceptual generalization of conventional cooling. In this kind
of quantum icebox cooling, the interaction energy 〈HI〉 is usu-
ally comparable to the system energy 〈Hs〉. To demonstrate its
quantum advantage, we have applied it to an idealized system,
similar to the one used in the quantum adiabatic search algo-
rithm. In particular, for the nonlocal interaction, the cooling
dynamics becomes periodic and nonergodic. However, even in
this case, as seen in Fig. 7, for the first half of the oscillation,
the system energy decreases with time while the bath energy
increases with time, a typical feature of cooling.

APPENDIX G: HIGH-ORDER TRANSITION

For the composite system H0 = Hs + Hb, the cooling starts
when the interaction HI is turned on, making the transition
between different eigenstates |is, φ jb〉 of H0 possible. The
transition probability can be written as [63]

Wi′s,φ j′b
,is,φ jb

= 2π

h̄

∣∣〈i′s, φ j′b

∣∣T +(
Eis, jb

)∣∣is, φ jb

〉∣∣δ
× (

Ei′s,φ j′b
− Eis,φ jb

)
, (G1)
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where

T +(E ) = HI + HIG
+
0 (E )HI + HIG

+
0 (E )HIG

+
0 (E )HI + · · ·

(G2)

with G+
0 (E ) = limε→0+ (E + iε − H0)−1 being the noninter-

acted Green’s function in the upper plane. Fermi’s “golden
rule” is obtained at the cutoff of T +(E ) ≈ HI. In the finite
time case, the δ function will broaden to a smooth function.

When HI is k-local, which is true for many realistic phys-
ical systems, each application of operator HI changes at most
k − 1 qubits in the problem system. The mth-order term in
Eq. (G2) represents a transition where HI is applied m times.
In the first-order approximation, only the states with Ham-
ming distance less than k from the ground state |gs〉 have
nonzero transition probability, which spans a space of much
lower dimension than the whole Hilbert space Ns. For the
unstructured search problem, the initial state of the problem
system is an equal superposition of all the states. For the
first-order transition, only O(nk−1

s ) components among the Ns

terms in the initial state can be cooled down, the successful
probability of which is O(nk−1

s /Ns). The interaction strength
is normalized to O(1/nk−1

s ). The average cooling time is in-
versely proportional to the product of the interaction strength
and successful probability, which is O(Ns). This shows that
the cooling speed will be reduced to the classical speed if just
the first-order term is considered.

A similar low-order cooling process happens with a
Markovian bath [39–43]. In the Markovian master equation,
only low orders of transition are taken into consideration. The
bath is only allowed to absorb local energy using low orders
of a k-local interaction. This makes it difficult for a Marko-
vian bath to cool down the system efficiently. In particular,

processes in which the system we want to cool first increases
in energy do not come into play with a zero-temperature
Markovian bath.

In contrast, the coherent bath with non-Markovian dy-
namics allows more general cooling paths. When 〈HI〉 is
comparable to 〈Hs〉, the convergence of Eq. (G2) becomes
slow. All these small transitions act together to flip about
ns/2 qubits coherently, reducing the cooling time to O(

√
Ns).

It is essentially a tunneling effect, where the quantum state
effectively arrives at the “forbidden” side of a high, wide
energy barrier.

APPENDIX H: COMPARISON TO OTHER ALGORITHMS

It is appropriate to compare our work with the more
familiar QAA or quantum annealing. Although it is based
on significantly different principles, the Hamiltonians of the
computational qubit and the initial-state preparation used
in our quantum icebox algorithm are widely used in QAA
[21,64–67]. Thus, the experimental systems used to imple-
ment QAA [65,68] and quantum simulation [69,70] can be
modified to explore our icebox strategy. The icebox strat-
egy might have practical advantages. During the process of
continuously changing the Hamiltonian in QAA, the system
is vulnerable to external heat or noise [71–73], because it
often encounters an exponentially small energy gap [74]. The
low-temperature bath is more forgiving.

Our quantum icebox algorithm also differs from the heat-
bath algorithmic cooling (HBAC) and interaction-enhanced
quantum computing, both in design and scope. HBAC is used
to purify a known ground state [48–52], while interaction-
enhanced quantum computing exploits different quantum
computers [53], as opposed to a computer and a bath.
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