In Preparation

[2] Yang, Jun, Jeremy Leconte, Eric T. Wolf, Timonthy Merlis, Colin Goldblatt, Nicole Feldl, Zhihui Li, Yuwei Wang, Daniel D.B. Koll, Feng Ding, Francois Forget, and Darian S. Abbot: Exoplanet Climate Model Intercomparison: Uncertainties in Clouds and Relative Humidity Among 3D Global Climate Models.

[1] Yang, J., D. S. Abbot, E. Tziperman, and Y. Ashkenazy, Warming the planets around low-mass stars by ocean circulation.

2017

[2] Jun Yang, Feng Ding, Ramses M. Ramirez, W. R. Peltier, Yongyun Hu, and Yonggang Liu 2017: Abrupt Climate Transition of Icy Worlds from snowball to moist or runaway greenhouse, Nature Geoscience, 10, 556-560, doi:10.1038/ngeo2994. [PDF] [Supplemental_Material] [Journal Link]
    press: Nature Geoscience News & Views, PKU news, Scientific American, PHYS.org, Nature Highlight, Nature Research (chinese), MOTHERBOARD

[1] Jun Yang, Malte F. Jansen, Francis A. Macdonald, and Dorian S. Abbot, 2017: Persistence of a freshwater surface ocean after a snowball Earth, Geology, 45(7), 615-618, DOI: https://doi.org/10.1130/G38920.1. [PDF] [Supplemental_Material] [Journal Link]
    press: New Scientist.

2016

[5] Yang, Jun, Jeremy Leconte, Eric T. Wolf, Colin Goldblatt, Nicole Feldl, Timonthy Merlis, Yuwei Wang, Daniel D.B. Koll, Feng Ding, Francois Forget, and Darian S. Abbot, 2016: Differences in water vapor radiative transfer among 1D models can significantly affect the inner edge of the habitable zone, The Astrophysical Journal, 826(2). [PDF]

[4] Yang, J., W. R. Pektier, and Y. Hu, 2016: Monotonic Decrease of the Zonal SST Gradient of the Equatorial Pacific as a Function of CO2 Concentration, J. Geophys. Res. Atmos., 121, 10,637–10,653, doi:10.1002/2016JD025231. [PDF]

[3] Wang, Y., Y. Liu, F. Tian, J. Yang, F. Ding, L. Zhou, Y. Hu, 2016: Effects of obliquity on habitability of exoplanets around M dwarfs. Astrophys. J. Lett., 823, L20. [PDF]

[2] Kopparapu, R., E. T. Wolf, J. Haqq-Misra, J. Yang, J. F. Kasting, V. Meadows, R. Terrien, and S. Mahaevan, Inner Edge of Habitable Zone for Synchronously Rotating Planets Around Low-mass Stars Using 3-D GCM Models, The Astrophysical Journal, 819:84, 14 pp. [PDF]

[1] Liu, Y., W. R. Peltier, J. Yang, G. Vettoretti, and Y. Wang, Strong Effects of Tropical Ice Sheet Coverage and Thickness on The Hard Snowball Earth Bifurcation Point. Climate Dynamics, doi:10.1007/s00382-016-3278-1. [PDF]

2014

[4] Yang, J., Y. Liu, Y. Hu, and D. S. Abbot, 2014: Water Trapping on Tidally Locked Terrestrial Planets Requires Special Conditions. The Astrophysical Journal Letters, 796 L22. [PDF]
    press: Astrobiology Magazine, astrobites.org

[3] Yang, J., G. Boue, D. C. Frabrycky, and D. S. Abbot, 2014: Strong Dependence of the Inner Edge of the Habitable Zone on Planetary Rotation Rate. The Astrophysical Journal Letters, 787, L2, doi:10.1088/2041-8205/787/1/L2. [PDF] [Journal Link]
    press: Astrobiology Magazine, astrobites.org, Beyond Earthly Skies

[2] Hu, Y., and J. Yang, 2014: Role of ocean heat transport in climates of tidally locked exoplanets around M-dwarf Stars. PNAS, 111, 629-634, doi:10.1073/pnas.1315215111. [PDF] [Journal Link]
    press: Peking University News, UrChance, SciTechDaily

[1] Yang, J., and D. S. Abbot, 2014: A low-order model of water vapour, clouds, and thermal emission of tidally locked terrestrial planets. The Astrophysical Journal, 784, 155, doi:10.1088/0004-637X/784/2/155. [PDF] [Journal Link]

2013

[2] Liu, Y., W. R. Peltier, J. Yang, G. Vettoretti, 2013: The initiation of Neoproterozoic Snowball Climates in CCSM3: The Influence of Paleo-Continental Configuration, Clim. Past, 9, 2579-2593. [PDF] [Open Access]

[1] Yang, J., N. B. Cowan, and D. S. Abbot, 2013: Stabilizing cloud feedback dramatically expands the habitable zone of tidally locked planets, The Astrophysical Journal Letters, 771, L45, doi:10.1088/2041-8205/771/2/L45. [PDF] [Journal Link]
    press: UChicago News, National Geographic, LA Times, Christian Science Monitor, Huff Post, VOA

2012

[4] Yang, J., Y. Hu, and W. R. Peltier, 2012: Radiative effects of ozone on climate of a Snowball Earth. Clim. Past, 8, 2019-2029, doi:10.5194/cp-8-2019-2012. [PDF] [Open Access]

[3] Yang, J., W. R. Peltier, and Y. Hu, 2012: The initiation of modern soft and hard Snowball Earth climates in CCSM4. Clim. Past, 8, 907-918, doi:10.5194/cpd-8-1-2012. [PDF] [Open Access]

[2] Yang, J., W. R. Peltier, and Y. Hu, 2012: The initiation of modern "soft Snowball" and "hard Snowball" climates in CCSM3. Part II: climate dynamic feedbacks. J. Climate, 25, 2737-2754, doi:10.1175/JCLI-D-11-00190.1. [PDF] [Journal Link]

[1] Yang, J., W. R. Peltier, and Y. Hu, 2012: The initiation of modern "soft Snowball" and "hard Snowball" climates in CCSM3. Part I: the influence of solar luminosity, CO2 concentration and the sea-ice/snow albedo parameterization. J. Climate, 25, 2721-2736, doi:10.1175/JCLI-D-11-00189.1. [PDF] [Journal Link]

2011

[1] Hu, Y., J. Yang, F. Ding, and W. R. Peltier, 2011: Model-dependence of the CO2 threshold for melting the hard Snowball Earth. Clim. Past, 7, 17-25, doi:10.5194/cpd-7-17-2011. [PDF] [Open Access]

Others

[1] 杨军、胡永云, 2017: 卡尔-古斯塔夫 罗斯贝,编译自James R. Fleming, Physics Today, 2017, (1):51, 物理, 46(1), 39-40. [PDF]

This website was last updated on and has been accessed times.


Made by Zhang Lecong @ PKU.
Email: 1400012729 at pku dot edu dot cn