您的当前位置是: 首页 >> 研究进展

高度自旋极化光电子的产生

 电子不仅具有电荷, 还具有内禀的自旋特性。产生具有高度自旋极化的电子源具有重要的科学意义,可以广泛应用于手性系统等等。目前产生自旋极化电子的方法主要通过光激发磁性材料(Fe,Co, Ni等)或非铁磁性材料(如碱金属、钨、GaAs等)得到自旋极化电子,这些方法得到电子自旋极化度通常较低。

北京大学物理学院、人工微结构和介观物理国家实验室“极端光学创新研究团队”刘运全教授和龚旗煌院士等,实验上测量了800nm和400nm圆偏振激光与Xe原子相互作用作用的多光子电离过程,通过冷靶电子离子动量谱仪,实现光电子能谱和动量谱的高精度测量。实验上,他们发现在400nm波长条件下,测量到可分辨多光子特征的电子能谱和动量谱结构,如图1(a)。由于Xe原子具有很强的自旋轨道耦合效应,实验上观测到3/2P(红色箭头)和1/2P(白色箭头)引起的能级分裂的动量分布和能量分布.而对于1/2P能级,在圆偏振激光作用下,可以选择性性激发自旋向下或自旋向上的电子 [图1(d)],因此,可以通过1/2P能级可以实现高自旋极化度的光电子。

图1 (a) 实验测量的Xe原子在园偏振激光作用下光电子角分布,(b) 理论计算角分布 (c) 1/2P通道的光电子角分布 (d) 3/2P通道的光电子角分布

   

 理论上,课题组通过发展能够包括磁量子数和角动量影响的强场近似理论,实现了园偏振激光作用下多光子电离的光电子动量谱和能谱的数值模拟,得到与实验一致的光电子动量分布。通过理论计算发现,在园偏振激光作用下,通过1/2P态,可以产生自旋极化达到90%以上的光电子,而通过3/2P态,自旋极化度最高仅为50%。

图2 光电子的动量分辨和能量分辨的自旋极化度

该研究工作可应用于产生高自旋极化度的光电子源,这将可以为电子加速器、低能电子衍射(LEED)以及低能电子显微镜(LEEM)等提供高自旋极化的电子源,促进采用自旋极化电子束研究手性分子成像问题等等。研究工作发表在近期出版的物理评论快报上, “Energy- and Momentum-resolved photoelectron spin polarization in multiphoton ionization of Xe by circularly polarized fields,”(Phys. Rev. Lett. 120, 043201(2018)上。博士生刘明明同学是该论文第一作者。该工作得到中国国家自然科学基金委、科技部、“极端光学协同创新中心”、“2011计划”量子物质科学协同创新中心等支持。

文章链接:
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.120.043201

 

Recently, the research group at Peking University, Prof. Yunquan Liu and Prof. Qihuang Gong, performed a joint experimental and theoretical study on momentum- and energy-resolved photoelectron spin polarization in multiphoton ionization of Xe atoms by circularly polarized fields. They have experimentally measured the three-dimensional photoelectron momentum distributions of Xe atoms in circularly polarized near-infrared (800 nm) and ultraviolet (400 nm) light, respectively. They analyzed the momentum- and energy-resolved photoelectron spin polarization by comparing the experimental photoelectron momentum distributions with the simulations based on strong-field approximation. It was show that, in circularly polarized near-infrared light  at 800 nm the spin-up and spin-down electrons are inseparable and the overall photoelectron spin polarization is less than 40%, while in circularly polarized ultraviolet light at 400 nm the photoelectron spin polarization can be higher than 95% with momentum gating. This paves the way to produce high-degree spin-polarized photoelectrons from strong-field multiphoton ionization. This work was published on Physical Review Letters entitled with “Energy- and Momentum-resolved photoelectron spin polarization in multiphoton ionization of Xe by circularly polarized fields” (Phys. Rev. Lett. 120, 043201 (2018).

版权所有 北京大学物理学院现代光学所 地址:北京市海淀区成府路209号北京大学物理大楼
邮编:100871 网站维护:lihongyun@pku.edu.cn 电话:62751757 传真:62752540