Search for Dark Matter at CMS

Anwar Bhatti

20th International Conference on Supersymmetry and Unification of Fundamental Interactions
Peking University, Beijing, China
August 16, 2012
What we Understand Today?

Chemical Elements: (other than H & He) 0.03%

Neutrinos: 0.47%

Stars: 0.5%

Free H & He: 4%

Dark Matter: 25%

Dark Energy: 70%

95% Mystery
Why we need Dark Matter?

Anisotropy in CMB \rightarrow cold massive particles
Weakly Interacting Massive Particles (WIMPs)

- Postulate a new species of elementary particles
- Weakly Interacting Massive Particles
- They are produced in the Big Bang and interact via:
 \[\chi + \chi \leftrightarrow \text{SM} + \text{SM} \]
- As the universe expands and temperature falls, they become diluted, and eventually can not find each other, so they freeze out
- Their relic density is related to their interaction strength, inversely proportional to the thermal averaged annihilation cross section (\(<\sigma v> \)).

Weakly interacting particles with weak scale masses naturally give the right relic abundance- “WIMP miracle”
Dark Matter Particle Searches

Needs independent verification from non-astrophysical experiment

1. Direct Detection Experiments
 - Dark Matter-nucleus scattering
 - Low mass DM particles not probed yet.
 - Less sensitive to spin-dependent coupling
 - XENON-100, CDMS, CoGeNT

2. Indirect Detection Experiments
 - Observe annihilation products
 - Low mass DM particles not accessible
 - Depends on DM density and annihilation model
 - Super-Kamiokande, IceCube

3. Collider Experiments
 - Laboratory production of DM particles
 - Sensitive to huge mass range
 - Both spin-dependent and spin-independent couplings
 - Tevatron, LHC

August 16, 2012

Anwar Bhatti SUSY2012
Phenomenology for direct pair production

- **Effective Field theory:**
 - Mediator is heavy and can be integrated out
 - Contact interaction

\[\mathcal{L} = \mathcal{L}_{SM} + i \bar{X} \gamma^\mu \partial_\mu X - M_X \bar{X} X + \sum_q \sum_{i,j} \frac{G_{qij}}{\sqrt{2}} [\bar{X} \Gamma_i^X X] [\bar{q} \Gamma_j^q q], \]

SM Lagrangian

kinetic terms for DM

set of 4-Fermion interactions between DM and SM quarks

Operators Γ describe scalar, pseudoscalar, vector, axial vector, tensor interactions

We consider

- DM particles with mass 1 GeV to 1 TeV
- Vector and axial vector interactions
Monojets Search

Baseline cut:
MET > 200 GeV, at most two jets with jet $p_T > 30$ GeV
Leading jet $p_T > 110$ GeV, $|\eta| < 2.4$
$\Delta \phi (\text{jet}_1, \text{jet}_2) < 2.5$ (QCD rejection)
Reject events with electron, muons, isolated tracks $P_T > 10$ GeV
MonoJet Search

Cut and count: Apply event selection and count the number of events in signal region

- Look for excess of events above those expected from SM backgrounds
- Understanding backgrounds is crucial.
- Determine from data control regions

Signal

Backgrounds

Z(νν) + Jets, just like signal

W+jets, e/u is not detected, τ decays hadronically

QCD, jet is mismeasured, producing Met
Background Estimation

Estimation of $Z\rightarrow\nu\nu$

- Control sample $Z\rightarrow\mu\mu$
- Select 2 opposite sign muons same as signal
- Well isolated muons $p_T > 20$ GeV, $|\eta| < 2.1$
- Invariant mass between 60-120 GeV
- Uncertainty $\sim 11\%$ mainly from stats 10%

Estimation of W-jet where lepton is lost

- Control sample $W\rightarrow\mu\nu$
- Select single muon same as signal
- Well isolated muon $p_T > 20$ GeV, $|\eta| < 2.1$
- Transverse mass between 50-100 GeV
- Uncertainty $\sim 11\%$ mainly from acceptance (8%) and selection efficiency (7%)
Results

- Backgrounds after full event selection:
 - $Z(\nu\nu)$ ($\approx 70\%$), $W +$ jets ($\approx 30\%$), data-driven
 - QCD, top, $Z +$ jets negligible ($\approx 1\%$), estimated from MC.

<table>
<thead>
<tr>
<th>E_T^{miss} (GeV/c)</th>
<th>≥ 250</th>
<th>≥ 300</th>
<th>≥ 350</th>
<th>≥ 400</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process</td>
<td>Events</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$Z(\nu\bar{\nu})+jets$</td>
<td>5106 ± 271</td>
<td>1908 ± 143</td>
<td>900 ± 94</td>
<td>433 ± 62</td>
</tr>
<tr>
<td>$W+$jets</td>
<td>2632 ± 237</td>
<td>816 ± 83</td>
<td>312 ± 35</td>
<td>135 ± 17</td>
</tr>
<tr>
<td>$t\bar{t}$</td>
<td>69.8 ± 69.8</td>
<td>22.6 ± 22.6</td>
<td>8.5 ± 8.5</td>
<td>3.0 ± 3.0</td>
</tr>
<tr>
<td>$Z(\ell\ell)+jets$</td>
<td>22.3 ± 22.3</td>
<td>6.1 ± 6.1</td>
<td>2.0 ± 2.0</td>
<td>0.6 ± 0.6</td>
</tr>
<tr>
<td>Single t</td>
<td>10.2 ± 10.2</td>
<td>2.7 ± 2.7</td>
<td>1.1 ± 1.1</td>
<td>0.4 ± 0.4</td>
</tr>
<tr>
<td>QCD Multijets</td>
<td>2.2 ± 2.2</td>
<td>1.3 ± 1.3</td>
<td>1.3 ± 1.3</td>
<td>1.3 ± 1.3</td>
</tr>
<tr>
<td>Total SM</td>
<td>7842 ± 367</td>
<td>2757 ± 167</td>
<td>1225 ± 101</td>
<td>573±65</td>
</tr>
<tr>
<td>Data</td>
<td>7584</td>
<td>2774</td>
<td>1142</td>
<td>522</td>
</tr>
<tr>
<td>Expected upper limit non-SM</td>
<td>779</td>
<td>325</td>
<td>200</td>
<td>118</td>
</tr>
<tr>
<td>Observed upper limit non-SM</td>
<td>600</td>
<td>368</td>
<td>158</td>
<td>95</td>
</tr>
</tbody>
</table>
Monophoton basic selection

Photon selection

- High energy photon: $p_T > 145$ GeV
- Central region of detector, $|\eta| < 1.4442$
- Shower shape in calorimeter consistent with photon

MET requirement

- $MET > 130$ GeV, vector sum of all reconstructed particles

Remove excessive hadronic activity

- No jet with $p_T > 40$ GeV and $|\eta| < 3.0$
Monophoton Backgrounds

Backgrounds estimated from MC and data-driven techniques

Backgrounds from pp collisions:
- $pp \rightarrow Z\gamma \rightarrow \nu\nu\gamma$: Irreducible background (from MC)
- $pp \rightarrow W \rightarrow e\nu$: Electron misidentified as photon (from data)
- $pp \rightarrow \text{jets} \rightarrow \gamma + \text{MET}$: One jet mimics photon, MET from jet mismeasurement (from data)
- $pp \rightarrow \gamma + \text{jet}$: MET from jet mismeasurement (from MC)
- $pp \rightarrow W\gamma \rightarrow l\nu\gamma$: Charged lepton escapes detection (from MC)
- $pp \rightarrow \gamma\gamma$: One photon mismeasured to give MET (from MC)

Other backgrounds:
- Showers induced by cosmic rays:
 - Identified and removed
- Neutron-induced signals:
 - Identified and removed
- Beam halo: Mostly removed;
 - residual contribution estimated from data

<table>
<thead>
<tr>
<th>Source</th>
<th>Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jet Mimics Photon</td>
<td>11.2 ± 2.8</td>
</tr>
<tr>
<td>Beam Halo</td>
<td>11.1 ± 5.6</td>
</tr>
<tr>
<td>Electron Mimics Photon</td>
<td>3.5 ± 1.5</td>
</tr>
<tr>
<td>$W\gamma$</td>
<td>3.0 ± 1.0</td>
</tr>
<tr>
<td>$\gamma + \text{jet}$</td>
<td>0.5 ± 0.2</td>
</tr>
<tr>
<td>$\gamma\gamma$</td>
<td>0.6 ± 0.3</td>
</tr>
<tr>
<td>$Z(\nu\bar{\nu})\gamma$</td>
<td>45.3 ± 6.9</td>
</tr>
<tr>
<td>Total Background</td>
<td>75.1 ± 9.5</td>
</tr>
<tr>
<td>Total Observed Candidates</td>
<td>73</td>
</tr>
</tbody>
</table>
Monophoton Search Results

- Distributions for photon p_T and MET
 Background processes describe data well
- No excess of events over expected SM backgrounds
 Total background: 71.9 ± 9.1
 Total observed candidates: 73
Pair Production of DM particles

Convert the results to DM-nucleon cross section to compared with direct detection experiments

\[\mathcal{O}_V = \frac{\bar{\chi}\gamma_\mu\chi}{\Lambda^2}, \text{Spin Independent} \]

\[\mathcal{O}_{AV} = \frac{\bar{\chi}\gamma_\mu\gamma_5\chi}{\Lambda^2}, \text{Spin Dependent} \]

\[\Lambda = M/\sqrt{g_\chi g_q} \]

\[\Lambda^4 = \Lambda_{d}^4 + \Lambda_{u}^4 \]

\[\mu = \frac{m_\chi m_p}{m_\chi + m_p} \]

\[\sigma_{SI} = 9 \frac{\mu^2}{\pi \Lambda^4} \]

\[\sigma_{SD} = 0.33 \frac{\mu^2}{\pi \Lambda^4} \]

M: Mediator Mass

\[g_\chi \text{ and } g_q \]: coupling to dark matter and SM quark

arXiV: 1109.4398 Fox, Harnik et. al.
Spin-independent DM-nucleon cross section

\[\sigma_{\text{Nucleon}} = \chi M^{-1} \times 10^{12} \text{cm}^2 \]

- CMS MonoJet
- CMS MonoPhoton
- CDF 2012
- XENON-100
- CoGeNT 2011
- CDMSII 2011
- CDMSII 2010

CMS
\[\sqrt{s} = 7 \text{ TeV} \]
\[\int L \, dt = 5.0 \text{ fb}^{-1} \]

Best Limit for dark matter mass < 3.5 GeV
Unexplored by direct detection experiments for spin independent case

August 16, 2012
Anwar Bhatti SUSY2012
Spin-dependent DM-nucleon cross section

Most stringent limits – improved by several orders of magnitude over 0.1 - 200 GeV mass range for spin-dependent case
Examples of signal events

A monojet event,
\[p_T^{\text{jet}} = 547 \text{ GeV}, \text{MET} = 598 \text{ GeV} \]

A monophoton event,
\[\text{Photon } p_T = 384 \text{ GeV}, \text{MET} = 407 \text{ GeV} \]
Summary

- Results of searches for dark matter at CMS using monojet/monophoton + missing transverse energy are presented.
 - Set limits on DM-nucleon scattering cross-section
 - Competitive constraints on spin-dependent cross section over large DM mass range
 - Extend spin-independent bounds into low DM mass
 - DM mass < 3.5 GeV, previously unexplored region

- Collider searches are complementary to direct detection.
Backup
Monophoton – Event Display
A Monojet Event

$MET = 359 \text{ GeV}$

$p_T(jet1) = 331 \text{ GeV}$
Limits on DM-nucleon cross section

Best Limit for dark matter mass < 3.5 GeV unexplored by direct detection experiments for spin independent case

Most stringent limits - constraints by several orders of magnitude over entire 1-200 GeV mass range for spin-dependent case