Lecture 37
The Array Theorem 

There are many cases in optics, especially the N-slit or diffraction-grating problem, where we must consider diffraction from a number of identical apertures.
e.g. N slits 
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· Aperture transmission function is (1-D)
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where 
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 = center position of each aperture 
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= aperture function of 1 aperture (all identical)

The Fraunhofer diffraction pattern is thus proportional to 
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Now we can write the aperture function as 
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This is the form of a convolution integral. We can then apply the convolution theorem of Fourier transforms.
For any functions 
[image: image7.wmf](

)

1

()

-

=

éù

ëû

x

fxFw

F

 and 
[image: image8.wmf](

)

1

()

-

=

éù

ëû

x

gxGw

F


     
[image: image9.wmf](

)

(

)

[

]

[

]

()()()()

¥

-¥

éù

¢

-==×

ò

êú

ëû

kk

fxgxxdxFwGwfxgx

FFF


Thus 
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An example of this is the diffraction grating 
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  Diffraction envelope      interference of N slits 
[image: image14.emf]
Another useful theorem (we’ll show for Fraunhofer diffraction): Babinet’s Principle 
· Consider an aperture 
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                           lens to get to far field 
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= diffraction pattern (field!) of 
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 Now consider the complementary aperture 
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 (the combination of the two apertures is transparent everywhere – i.e. no aperture at all )
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Theorem：
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, where 
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 is the field that would be present on the screen with no aperture present.
Proof: left as an exercise (see Guenther app.11-A)

(This is useful on occasion when one knows 
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 and
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, and wants to find 
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 - e.g. homework corona problem!)
Image formation and resolution 

· Lipson 12.1-12.3

· FYI only (not on exam) 
The theory of diffraction we have been developing can be used to give a complete description of image formation. We don’t have time to pursue this important theory – the interested student can find the full theory in Goodman’s book Fourier Optics (which is used in 435). We shall have to content ourselves with a qualitative consideration of several points of view which arise from the theory.
We know how images are formed in geometrical optics; an ideal imaging system will image each point on an object onto a single point in the image volume. (No aberrations => perfect “stigmatic” imaging.)
      [image: image26.emf]
From diffraction theory we know, however, that even in the absence of aberrations, the finite aperture of any real optical system will cause each image point to be blurred (into an Airy disk if the aperture is circular).

Nomenclature:

 “point-spread function” = image produced by an optical system of an object point 

  [image: image27.emf] 

Now consider the imaging of two object points: 
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Case(i)：
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and 
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 are coherent with respect to each other (e.g. object is illuminated with a  coherent source such as a laser)
Coherence => add fields 
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Image field = (geometrical image) 
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Note that the image will depend on the phase relationships of the object points!

Image intensity = 
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Case (ii)：
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 are incoherent with each other (e.g. they are independent emitters such as fluorescent molecules ,or they are illuminated by a perfectly spatially incoherent source).
   Incoherence => add intensities 
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Thus if we consider the point-spread function for incoherent imaging to be the intensity PSF (
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 for a circular aperture), we arrive at the statement

   image intensity = (geometrical image)
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(point spread function)

e.g. I-D imaging 
   [image: image41.emf]
Thus we see that diffraction limits the spatial (or angular) resolution of an imaging system to about the size of the Airy disk.
Resolution:

Rayleigh criterion: two points are said to be resolved if the maximum of the PSF of
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 overlaps with the first minimum of the PSF of
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Sparrow criterion: two points are resolved if the intensity shows a minimum between them.

See lipson figs. 12.6+7:
[image: image44.emf]
Note the Rayleigh criterion fails for coherent imaging!!
For incoherent imaging, we find from our expression (P.377) for the Airy disk, that the minimum angular separation of two points is 

     Rayleigh:  
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  (D=aperture diameter)
     Sparrow:  
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From a Fourier optics point of view, we have seen that a lens acts as a “Fourier transformer” 
(Fraunhofer diffraction pattern 
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 Fourier transform of input field, i.e. aperture function).
Of course, we saw that the diffraction pattern is not exactly the Fourier transform, but is multiplied by an overall quadratic phase (see P.371).
It is straightforward to show that, if an object is placed at a distance f in front of a lens of focal length f, the quadratic phase is eliminated. 

· Field is an exact Fourier transform 
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From this it is easy to see how a second lens will essentially “inverse Fourier transform” to yield an image (intuition: just apply time-reversed symmetry to propagation!)
  [image: image49.emf]
The Fourier analysis shows that the image is magnified and inverted, just as geometrical optics predicts. 
· Imaging can be considered to be a process of double Fourier transformation 

Effect of finite aperture size: lose high spatial frequencies (see fig. below) => Fourier transform between the two lenses is not exact (missing detail)
· Naturally find image = convolution of object with PSF 
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