Lecture 11
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-How is the atom put into such a superposition state?

> it “shakes  the electron cloud

€ field incident on atom




How do you describe the displaced wave function in terms of the original states?

Wdisp = z aan = alsl/lls + aZSWZS + a2 pWZp +..
n=m

(Superposition principle)
As usual, find coefficients by

a‘n = .[l//disp‘//n*dv
Note that the 2 largest coefficients will be

als = Il//displ//ls*dv

aZp = .[l//displ//z p*dv

(if hw""‘ =B —Ess , then these will be essentially the only nonzero coeffs,) => field

puts atoms in superposition state .
Thus, although we cannot make antennas at optical frequencies, we can use the little antennas
nature provides us with, namely oscillation atoms and molecules.

Review of electric dipole radiation

In the course of developing the CEO model and its consequences, we are going to need to recall
the main features of electric dipole radiation. The proper development of the theory is best left to
your electromagnetic course; here we only have time and space to outline the approach and main
results.

The wave equation for the vector potential is similar in form to that of the fields:
2

- 0
VA - ol ﬁ = —,UOJ

It can be shown that the solution to this equation can be generally expressed as (see, e.g. Jackson

dep.6)

o J(.t r-r

A(F 1) = 2o jjydv ’dt’5(t’+|— 1)
4y |[F—F C

The & -function guarantees that
3 >/
_— [F—7|
c = retarded time

= A= “retarded vector potential”

If the current oscillates harmonically
J(F,t) = J(F)e'™

Then the delta function gives



—ik|F—r]

e

4V’
=

Ar) =22 [3(7)

The region in which J#0 js very small (atoms, remember), i.e. < A so we consider

-
Il

F-r|=r—f.i (
In the electric dipole approximation, we keep only the leading term:

eikr _
, [y d()dv’

= My
A(r) =2
(") A

(Keeping higher order terms gives radiation from magnetic dipoles, electric quadruples, etc.,
which need not concern us here.)

Remembering that V" hounds the currents entirely (so J =0 on the surface of v /), we can

put this in a more familiar form by integration by parts :
[I(F)AV' =—[F(V-I) dV'=-ifFp(F)dV’

V-j=—6—A:—iwA
ot

Where we have used
op .
V-J=-—=-In
ot v
Define electric dipole moment by

P=],Fp(f)dv’

(note similarly to quantum expression in P.69)

—ikr

P

A(F) = —iw e

From this we can get the fields via

B=VxA

2
E=—iC—VX§ VXHZQZM)EOE VxB =i E
And @ (from ot |V X B=laposol

We need only consider the special case of dipole oriented along the z-direction:

P = Poé cos wt

Then in the “far field” (r>>1)



cos a(t r)
— 2 -
E:(Er,Eg,E¢)=(o,4“’p§sin9 : C 0)

7tenC
r
. —a?po cosa(t——)
H = (Hr.Ho.Hy) = (0,0, sing———C)
drc r
The Poynting vector is thus radial:
r
N 4 2 cos’ o(t——)
S=(-2%° sin?g———C0,0)
167g0C r

See Figs. on following page

Electromagnetic waves
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Fig. 4.18. Radiation from an oscillating electric dipole.

Dipole axis
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Fig. 4.19. Radiation polar-diagram for a dipole oscillator: (a) two-dimensional
section; (b) three-dimensional sketch.




Notes

(i) Wave is of form of spherical wave, modulated by SiN€ (amplitude ~1/T | power ~1/ re )

(ii) Power proportional to square of dipole moment
(iii)Power proportional to fourth power of frequency @

The total power radiated by the dipole averaged over an optical cycle is

o’ po?
Po)= 1"
(PO} = 12 o

Radiative decay
The most immediate consequence of the above formula is the phenomenon of radiative decay.

Suppose an atomic oscillator is at form t=1o get oscillating with an amplitude Po, but no
further power is used to drive the oscillator. The dipole will radiate power, and consequently, by

conservation of energy its amplitude p must decay in time.

If we write P = ez, then the energy in the oscillating dipole is
uG) =%ma)ozz(t)2 +%mz'(t)2

The energy can be shown (exercise) to decay in time as
Ut) = Ut,)e™ ™"

Where 7 s the “lifetime” of the oscillator
The radiative decay rate within this purely classical model can be shown to be

y __1__ e?wo?
" 6reomc®

d 7/rad = 1083_1

Plugging in the electron mass and visible frequencies, you fin , or a lifetime of

~10 ns

Armed with these results, we can now consider an electromagnetic wave incident on a single atom,
which we assume has a resonant frequency ©° . The field will induce a polarization in the atom,
and the atom will therefore radiate.

Def. mass +charge Me  -e for electron ; Mn +e for nucleus

Fen= Te T = relative position vector

Fre=—F «  Fen=forceon € dueton (i.e. Harmonic restoring force)
The e.m. field exerts a force on each charge

F=q(E+V xB)=qE

Since the V *B term is negligible at nonrelativistic speeds (is smaller by Vie = negligible



for optical fields in linear response regime. It is important in experiments with terawatt lasers, but
in that regime the Lorentz model is nonsensical
Newton :

d?re
Me = —eE le,t) + Fen len
i (Fet) (Fen)

d*°r

Mn 2n = eE(Fnt) + Ii.ne(Fen)

Define center-of-mass coordinates:

ﬁ MeFe+Mnln F =T
=—————,; X="Ten
Me+Mn
_ = [Mnh _
Fe=R+-— X
= M M =me+mn
= ﬁ- Me _,
M
Substitute these into Newton’s equation:
d’R _d?X
meF-F m—- prea =—eE(R +ﬁx 1) + Fen(X)
MeMn
m=
Where Me+Mn = reduced mass
d’R _d?X =
mn——m——eE R——x,t + Fne(X
a2 dt? (R=\y %0+ FeX)
d*R d*3

m m
" dt? dt*

= eF(F - 22 %,0) - F (%)
M 2.

We can add and subtract these two equations to separate R and X :
Add =>

d ﬁ Me _ Mn _

M —e[E(R-—X,t)—E(R+-——X,t
e [E( v ) —E( M )]
2p 2g
(me—m) IR 4 om I X _ erER - % t) + ER - ™ %, )]+ 2Fen(X)

Subtract => dt dt* M M

h
Consider the J' component of the field, and Taylor expand to first orders:

Ei(x+ AX) = Ei(x) + S5 Ay

Now in 3-D, the slope along X is X-VE , S0 in general we have



Ei(R+AF) = Ei(R) + (X Ari-X)- VEi
This can be written

E(R+AF) = E(R)+Af - VE

ER+ g 6)=ER D)+ 5. VE(R 1)
Thus M M

The justification for keeping only the first term is that for optical fields A =5000 A

but X=1A, so the approximation is equivalent to the dipole approximation.

The center-of-mass egn. now becomes

- mn_' o
=e[-—X-VE(R,t1)——X-VE(R,t
e [ M (R,1) v (R,1)]
=
M IR _exvER Y
Oor t

The center of mass of the atom is thus accelerated by the gradient of the field

This force exerted by spatially varying fields is actually quite useful for trapping and cooling
atoms.

In fact, we shall see shortly that the dipole moment of a Lorentz atom is proportional to the

applied field, so P=-& = E

Where the proportionality constant ¢ s called the polarizability.

o
MIR B .VE-uE.VE=YV(E E)
Then dt 2
V(E-E)=E-VE+(VE)-E=2E-VE
But
F=2v|g}
Or 2

Which is the force on the center of mass of the atom .1t just follows the gradient of the intensity!

Now P=aE for any kind of small (sub- A ) dielectric particle in a weak electric field
E,g. For a dielectric sphere with index n in a medium with index ™™, def. Nr="n / Nm

nrz—l
2
nr + 2

o= mzas( )

Soif Mr>La>0 anqthis particle can be trapped


http://zh.wikipedia.org/wiki/%C3%85

yh

P
27 ()11 [ i?"‘

T 1ot

E.g. Gaussian beam at focus
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“Qptical tweezers”



