
Lecture 11  

 

 

-How is the atom put into such a superposition state?  

     field incident on atom  => it “shakes ” the electron cloud 

     



How do you describe the displaced wave function in terms of the original states? 
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         (Superposition principle) 

        As usual, find coefficients by  

         n disp na dV   
 

        Note that the 2 largest coefficients will be  

         1 1s disp sa dV   
 

         2 2p disp pa dV   
 

        (if 2 1opt P SE E  
, then these will be essentially the only nonzero coeffs,) => field 

puts atoms in superposition state . 

Thus, although we cannot make antennas at optical frequencies, we can use the little antennas 

nature provides us with, namely oscillation atoms and molecules. 

 

Review of electric dipole radiation 

In the course of developing the CEO model and its consequences, we are going to need to recall 

the main features of electric dipole radiation. The proper development of the theory is best left to 

your electromagnetic course; here we only have time and space to outline the approach and main 

results. 

 

The wave equation for the vector potential is similar in form to that of the fields: 

2
2

0 0 02

A
A J

t
  


   


 

It can be shown that the solution to this equation can be generally expressed as (see, e.g. Jackson 

dep.6) 
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The δ-function guarantees that  
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 = retarded time 

    A = “retarded vector potential” 

If the current oscillates harmonically  
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Then the delta function gives  
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The region in which 0J   is very small (atoms, remember), i.e.   ,so we consider  
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In the electric dipole approximation, we keep only the leading term: 
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(Keeping higher order terms gives radiation from magnetic dipoles, electric quadruples, etc., 

which need not concern us here.) 

Remembering that V   bounds the currents entirely (so 0J   on the surface of V  ), we can 

put this in a more familiar form by integration by parts : 
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Define electric dipole moment by  
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From this we can get the fields via  

           B A   
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We need only consider the special case of dipole oriented along the z-direction: 
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Then in the “far field” (r>>l)  
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The Poynting vector is thus radial: 
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See Figs. on following page 

 

 

 

 



Notes  

(i) Wave is of form of spherical wave, modulated by sin  (amplitude ~1 / r  , power ~
21/ r  ) 

(ii) Power proportional to square of dipole moment  

(iii)Power proportional to fourth power of frequency   

 

The total power radiated by the dipole averaged over an optical cycle is  

        
3

4 2
0

0

0

P
12 c

 




 

 

Radiative decay  

The most immediate consequence of the above formula is the phenomenon of radiative decay. 

Suppose an atomic oscillator is at form 0t t  set oscillating with an amplitude 0P , but no 

further power is used to drive the oscillator. The dipole will radiate power, and consequently, by 

conservation of energy its amplitude p must decay in time. 

 

If we write p ez , then the energy in the oscillating dipole is  
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The energy can be shown (exercise) to decay in time as  
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Where   is the “lifetime” of the oscillator 

The radiative decay rate within this purely classical model can be shown to be 
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Plugging in the electron mass and visible frequencies, you find 
8 110rad s 

, or a lifetime of 

~10 ns 

Armed with these results, we can now consider an electromagnetic wave incident on a single atom, 

which we assume has a resonant frequency 0 . The field will induce a polarization in the atom, 

and the atom will therefore radiate. 

Def.  mass +charge  em , -e for electron ; nm , +e for nucleus  

     e n e nr r r   = relative position vector  

     ;n e e nF F    enF = force on e

due to n (i.e. Harmonic restoring force) 

The e.m. field exerts a force on each charge  
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Since the V B  term is negligible at nonrelativistic speeds (is smaller by /V c  => negligible 



for optical fields in linear response regime. It is important in experiments with terawatt lasers, but 

in that regime the Lorentz model is nonsensical  

Newton : 
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Define center-of-mass coordinates: 
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Substitute these into Newton’s equation: 

        

2 2

2 2
( , ) ( )

n
e en
d R d x m

m m eE R x t F x
Mdt dt

    
 

Where  
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We can add and subtract these two equations to separate R  and x  : 

Add =>  
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Subtract => 
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Consider the 
thJ  component of the field, and Taylor expand to first orders: 
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Now in 3-D, the slope along x is x̂ E , so in general we have 
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This can be written  
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The justification for keeping only the first term is that for optical fields  5000 Å 

but x 1Å，so the approximation is equivalent to the dipole approximation. 

 

The center-of-mass eqn. now becomes 
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Or         
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The center of mass of the atom is thus accelerated by the gradient of the field  

This force exerted by spatially varying fields is actually quite useful for trapping and cooling 

atoms. 

In fact, we shall see shortly that the dipole moment of a Lorentz atom is proportional to the 

applied field, so  xP e E    

Where the proportionality constant   is called the polarizability. 

Then   
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Which is the force on the center of mass of the atom .It just follows the gradient of the intensity! 

Now P E  for any kind of small (sub- ) dielectric particle in a weak electric field  

E,g. For a dielectric sphere with index n in a medium with index mn , def. /r mn n n  
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So if 1, 0rn   , and this particle can be trapped  

http://zh.wikipedia.org/wiki/%C3%85


 

E.g. Gaussian beam at focus  

    

 

 

         

 

“Optical tweezers” 

 

 

 

 

 

 

 

 

   

 

 

 

 

 


