
 

Lecture 17  

As a result of expressions like this, it is clear that it can be very useful, then, to consider the 

possibility of the angular frequency being considered to be a complex variable, rather than the real 

variable we have always considered it to be. 

 

In other words, we can write a field  

            
0( ) i tE t E e   

Where now, not only are E and 
0E  complex (which we do in order to account for phase), but 

 is complex too. This extension of the definition of E is often called the “complex analytic 

signal” associated with the physical electric field. 

 

Note how damping naturally comes in this formulation. Decompose   into its real and 

imaginary parts. 

            r i     

=>         ( )

0 0
r ri i t i ttE t E e E e e

      

As usual, the physically significant (i.e. measurable) part of E is the real part  

             0Re (Re ) cost

rE E e t    

Clearly the real part of   corresponds to the frequency of the harmonic oscillation, and the 

imaginary part corresponds to the temperal damping of the field. (or polarization ) 

 

Now that we are free to consider   as a complex variable, we can go back to our integral (*) 

p.114. It will be instructive to use complex-variable integration methods to evaluate the integral. 

 

Digression: A review of some important results in complex-function theory. 

 

Complex variable 
iz x iy re        

Complex function f(z) 

Derivative: as usual  
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If the derivative exists in a region R of the 

complex plane, f is said to be analytic in R. 

0( )f z  is analytic at 0z  if there is neighborhood 0z z    at all points of which ( )f z  

exists. 

Quite often, functions we are interested in fail to be analytic in a very specific way. 



 

A point at which f fails to be analytic is called a singularity. 

 

0z  is called an isolated singularity of f if we can find 0   such that the circle 

0z z   encloses no singular point other than 
0z  

A specific functional form containing an isolated singularity is 

0
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g z
f z

z z
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
 Where ( )g z  is 

analytic in a region containing 
0z  

A function of this form is said to have a simple pole of 0z z  

Def.:  if  0lim ( ) 0
n

z z
z z f z A


   , 

then 0z z  is called a pole of order n. 

ex. 
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
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has a simple pole at 0z  and a third order pole at 0z z   

 

It should be clear why functions like this are interesting in linear response theory. Look at the 

integrand in (*) p.114. 

  1 2

i te 

    
 has simple poles at 1  and 2 . 

 

Physical significance of the poles: 

Note that 1  and 2  are the (positive and negative) natural oscillation! (Go back and look at 

our free-field solution on P.81) 

 

This is a general result: the poles of the response function gives the resonant frequencies of the 

system. 

 

Back to mathematics: 

   If ( )f z  is analytic, the limit 
0

( ) ( )
( ) lim

z

f z z f z
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 
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
 exist .This is a much more 

restrictive condition than it is for real variables. The reason is that the limit must exist (and be the 

same) no matter which direction you approach the point z in the complex plane. 

 

We will not prove the following result, but the main consequence of the analyticity condition 



 

turns out to be Cauchy’s theorem: 

Suppose g(z) is analytic inside and on a 

simple closed curve C. Then  

         ( ) 0
c
g z dz   

Now let’s consider integrals of functions with a 

simple pole. 

 

 

 

 

Cauchy’s integral formula 

If f(z) is analytic inside and on a simple closed curve C and 0z is any point inside C, then 

            
0

0

1 ( )
( )

2
 


c

f z
f z dz

i z z
 

Where C is traversed in the positive (counter clockwise) sense  

 

Note that the function 0( ) / ( )f z z z  has a simple pole of 0z . 

Exercise for the reader: you should be able to show that Cauchy’s theorem is a simple special case 

of this. 

Heuristic “derivation” of the integral formula: 

 

First, let’s consider a consequence of Cauchy’s Theorem. 

If the integrand is analytic, then the integration curve C can be deformed (within the region of 

analyticity) and one still has ( ) 0
c
g z dz  . 

This may be seen by deforming the curve as follows  



 

 

Clearly the integral along 
2C  “down” cancels the integral along 

2C  “up”, so  

           
1

( ) ( )
c c
g z dz g z dz    

In fact, one can smoothly deform C without changing the value of the integral as long as the 

deformation does not cross any singularities of g(z). 

Now consider  

            0( ) ( ) / ( )g z f z z z   

Where f(z) is analytic everywhere (so g(z) has one simple pole ). 

Thus we can transform the integral ( ) 0
c
g z dz   around an arbitrary curve C which endorses 

the pole to an integral around an infinitesimally small circle surrounding the pole : 

            

 

                     ( ) ( )
c c
g z dz g z dz


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Now, if f(z) is a sufficiently “smooth” function, then in the infinitesimally small region around 0z  

defined by C ,its value will be essentially constant, so  
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By a change of variables 0z z z   , dz dz , we have  

            0

0

( ) ( )
( )

c c

dz dz
f z f z

z z z
 


 


 

Write 
iz e    where  = radius of curve C  
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Thus we find the Cauchy integral formula  

            

0

1 ( )
( )

2
c

f z
f z dz

i z z
 


 

Again, this is a heuristic derivation, not a proof, but the result is straightforwardly proved in 

general. 

Definition: If 

0

( )
( )

f z
g z

z z



 where f(z) is analytic, then  0 0 0( ) ( )f z z z g z   is called the 

residue of g at 0z . 

Cauchy’s integral formula is thus often recast as  

             0( ) 2 Re ( )
c
g z dz i sg z  

If the integrand has multiple poles inside C, e.g.  
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Then since g is analytic everywhere except at 0z , 1z ,C can be deformed as we have seen previous . 

 

The integrations along the straight lines between the poles cancel (since the directions are 

opposite), so  

            
1 2c c c
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Thus  
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In general, if g has multiple poles within C  

            ( ) 2 Residues c g z dz i  



 

The proof is an extension of the argument above  

       

This is actually all the complex-variable calculus we will need. We are trying to evaluate 

 
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Where  
2 2

1,2 0 / 4
2

i


      

The integral has two simple poles in the upper half 

plane  

 

Note that the integral we want is along the real axis 

from , i.e. 
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We can evaluate the integral using Cauchy’s 

integral formula if we pick the curve C wisely. 

(1) Consider times t<0 

Choose C to be a semicircle in the lower half plane: 1 2C C C   

 

Why choose this curve ?  
1 2c c

     

a) the integral we want is from –R to R along the real axis (with a minus sign from the 

direction ) 



 

b) along the semicircle, 
iRe   , where runs from  to 2  

R is large ( ) so 1 2,R    
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Now, when 2 , 1 sin 0         

=>when t<0,
sin  R te 0 as R  

Thus 
1

0
c

  

By Cauchy’s Theorem 0
c
  also, since there are no poles inside C 

Therefore 
1

0
c

  also 

Therefore  t  0 for t< 0 

This is exactly what causality requires! 

The response function must be zero for negative times, and our harmonic oscillator solution has 

now been explicitly shown to satisfy this condition. 

 

(2) consider times t> o  

Clearly, we expect a nonzero result here. Now, we choose our curve in the upper half 

phase: 

 

Now 
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Using the same argument as before, (proof left for reader) 

      
1 0C    as  R  

=> 

  

 
   

     1 2 1 2 1 2 1 2

1 2 1 2

/2 /2 /2 /2
/2 /2

1 2 1 2 1 2

2 4
2

i t i t i t i ti t
i t i te e e e e

d i e e
i

       
   

  
       

    
  



 
            

2 2 2 2 2 2

1 2 0 0 0 0/ 4 / 4 2 / 4 2
2 2

i i
 

        
   

            
   

 

And  1 2

2 2
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Where (t ) =unit step function 

 

Note that: 

(1) (t ) guarantees causality  

(2) Damped oscillation (includes renormalized frequency) 

(3) amplitude proportional to 
2

0/Ne m  as in frequency domain  

(4) it’s a sine oscillation , not a cosine ! 

 

Of course, now that we have  t , the time-dependent polarization can be found 

for an arbitrary driving field E(t) via the convolution integral . 

 

 



 

 

 

 

 

 

 

 

 

 

 


