Lecture 35
Thus we have ,from (*)　Ｐ．３５７，　
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This is the Helmholtz-Kirchhoff integral theorem. 

It says we know the field at 
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 given its value (and thus its derivative 
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 also) on any surface S containing
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.

Now suppose we have a point source at
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, and we want the field at
[image: image6.wmf]0

P

, but there is an opaque screen containing an aperture between them:

We take our surface S enclosing 
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 to be as shown:
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Thus we need 
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In order to proceed any further we must now make some approximations.

1. Assume 
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 can be made far enough from 
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 that 
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 are zero on 
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.When is this assumption valid?:
On
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  as R 
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This is called the Sommerfield radiation condition.

It is straightforward to show that this condition is satisfied by a spherical wave. If we consider the field over an arbitrary aperture to be a superposition of spherical waves, then this condition is generally satisfied.
2. Assume that the field 
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 and its derivative 
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 in 
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 are identical to what they would be without the screen
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.
3. Assume that 
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 on the screen
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. (i.e. the screen is perfectly opaque )
The latter two assumptions are known as Kirchhoff’s boundary conditions.

The boundary conditions are certainly reasonable for all regions of the screen 
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 and in the aperture
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, except near the boundary between 
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 and
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It is not obvious that these assumptions are valid near the boundary , since (i) the boundary conditions on the field are clearly violated, and (ii) the total field is the sum of the field incident on the aperture plus the field generated by the polarization induced on the screen boundary by the incident field －indeed, it is the sum of these two fields that produces the diffracted field in rigorous diffraction theory.
In fact, Kirchhoff’s boundary conditions are not valid for a region within a few wavelengths of the boundary.
More rigorous treatments of diffraction show that the Kirchhoff boundary conditions yield accurate solutions provided 
(i) The size of the aperture 
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(ii) The observation point 
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 is far (
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) from the aperture.
If these conditions are not satisfied, a full boundary-value problem must be solved. From now on, we will assume such “fringing field” effects can be safely neglected.
With the Kirchhoff boundary conditions, the Helmholtz-Kirchhoff integral formula reduces to 
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Now if we have a point source at
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, and if the aperture 
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 is far from
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, then in the aperture
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 (i.e. source field 
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Looking in the aperture region a little more closely:
     [image: image43.emf]
· On left hand side 
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Similarly, 
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Thus  
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(*)  
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= Fresnel – Kirchhoff Diffraction Formula 

It is useful to rewrite this in the following form:
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Where 
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There are several features to note:
1. F looks like a “source term“ in the aperture, and the integral over 
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 means the field at 
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 is the integral over all the “fictitious point sources “located
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.
2. The strength of the secondary sources is 
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 (field per unit wavelength).

3. There is a 
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 phase shift between the radiated field and the secondary sources. This is physically just the Gouy phase shift that any field undergoes in propagating from the near field to the far field.
4. The term in brackets 
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 is called the obliquity factor. It says that the fictitious secondary sources are not in fact spherical radiators , but they radiate preferentially in the forward direction , as seen in the following plot :
Consider source on axis:

  [image: image58.emf]
                 Thickness of shaded region signifies source strength 
Note 
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 in backward direction 
Thus the obliquity factor solves one serious problem with the “intuitive” formulation of Huygen’s Principle, namely the presence of the “backwards wave.”
Huygen’s wavelets which are spherical waves generate both forward and backward propagating waves. Our integral treatment shows that the backward wave actually does not exist (the obliquity factor eliminates it).
Diffraction of Paraxial Waves 

The principle assumptions underlying the Fresmal-Kirchhoff theory are that 
     aperture – observation distance 
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     aperture dimensions 
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We will now restrict our attention to diffraction of paraxial waves, where the wavefronts travel essentially along the z-axis and are spherical.
   [image: image63.emf]
Paraxial approximation: 
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(aperture “looks small” from either the source or the observation point )

· In this case , 
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 and 
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 are essentially 
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 and 
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¢

 respectively (they vary by only a small amount over the aperture ) and thus can be taken out of the Fresnel-Kirchhoff formula in the denominator 
· Likewise the obliquity factor is essentially constant over the aperture
The Fresnel-Kirchhoff formula for paraxial rays is thus 
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Note that we cannot take the 
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 in the phase term outside the integral since the phase can vary by many 
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 over the aperture.
In all over calculations, we will also take the obliquity factor to be essentially unity. (It turns out that the error this induces is less than 5% for
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. Ref: Goodman).
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This describes the diffraction of a paraxial wave emitted at a point source 
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 as observed at 
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.
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                       Spherical wave at input described by 
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Quite commonly, of course, we must consider input waves which are more complicated. We may consider an arbitrary input field at the input to the aperture as a simple extension of the single –point-source field. There are many different notations in the various texts, but we will follow one fairly close to Guenthers.
We suppose the field immediately after the aperture is given by 
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Where 
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 is the complex aperture function, describing the (possibly complicated) variation in amplitude and phase over the aperture. The diffraction integral is now 
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This is the integral we must solve to find the field at
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 given
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Geometry:  
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             R= length from elements ds to 
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             Z= distance between 
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In the paraxial approximation 

   
[image: image92.wmf](

)

(

)

22

22

01

1

2

xh

xh

-+-

--

æöæö

=+++

ç÷ç÷

èøèø

;

xy

xy

rzz

zzz


Keeping only the first term in the binominal expression
This is known as the Fresnel approximation.

We can easily see that this is the same Fresnel approximation as we made in our consideration of the paraxial wave eqn. (see notes P.331)

· Note 
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ok for wave amplitude ,as usual 
· Plug above in (*) P.367 =>
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