Emergent Phenomena in Manganites under Spatial Confinement

Jian Shen

Department of Physics Fudan University, China

The Excitement in Nanoscale Physics

Graphene

Carbon nanotube

Complexity in Strongly Correlated Systems

High-Tc Superconductivit

Colossal Magnetoresistance

Multiferroicity

Complexity under Spatial Confinement

What exciting phenomena can we observe?

E. Dagotto, Science 309, 257 (2005)

х

Magnetic

Order

FL

Electronic Phase Separation in Complex Oxides

PRL 103, 097202 (2009)

Science 329, 190 (2010)

Model System: La_{5/8-y}Pr_yCa_{3/8}MnO₃

Ferromagnetic metal

Charge-ordered Insulator

Large-scale (Micron) Phase Separation in LPCMO

TEM

MFM

Uehara et al, Nature 399, 560 (1999)

Zhang et al, Science 298, 805 (2002)

Electronic Phase Separation in LPCMO Film

Morphology

Spectroscopy

320 nm x 320 nm

Phys. Rev. Lett. 95, 237210 (05)

- I. Using spatial confinement to "see" electronic phase separation and their dynamic behavior
- **II. Electronic Nanofabrication**

I. Using spatial confinement to "see" electronic phase separation and their dynamic behavior

LPCMO Wire Fabrication Starts from High Quality Thin Film Growth

LPCMO Wires

Smallest structure ~ 50 nm

Giant and Discrete Steps in Metal-insulator Transition in LPCMO Wires on LaAIO₃

Phys. Rev. Lett 97, 167201 (2006)

Dramatic Effect of Spatial Confinement

70 nm LPCMO 10 μ m wires on SrLaGaO₃

Phys. Rev. Lett. 100, 247204 (2008)

Spatial Confinement Effect of Electronic Phase Separation

Dynamics of Domain Transitions

Phase Transition Dynamics

Binned data for 6 hours

Time Scale of FM - COI Transition

Effect of Measuring Current

Effect of Measuring Temperature

II. Electronic Nanofabrication

Application of Anisotropic Strain Field in LPCMO Films

- Pseudo-cubic film locked to orthorhombic NdGaO3 (110) substrate
- Drives in-plane anisotropic strain field
- Film and Substrate commensurate across full temperature spectrum

Strain Field Effects on Transport

Nature Phys. 5, 885 (2009)

Anisotropic Percolation Model

Magnetic Field Effects

Metal-insulator transition temperature

Resistivity at metal-insulator transition

Difference in ρ along two in-plane directions

- High B-field melts insulating phase and leads to isotropic behavior
- Low B-field shows strong anisotropic resistivity of over 20,000%

Electronic Nanofabrication

Conventional

Electronic

Application of Local Magnetic Fields on Manganites Thin Films

Fe Nanodots on 20nm La_{0.7}Ca_{0.3}MnO₃ Thin Film Grown on LaAlO₃(001)

- 20nm thin film of LCMO is an insulator
- Ferromagnetic Fe nanodots grown on surface
- Becomes metallic with high MIT temperature

Nonmagnetic Nanodots Have No Effect

Add non-magnetic metallic Cu nanodots for comparison
Change in resistivity is greatly enhanced only by Fe nanodots
Magnetoresistivity is unaffected by simple non-magnetic metal

Effect of Magnetic Nanodots induced Local Exchange Field

LCMO film

Direct Evidence of Exchange Coupling between Fe and LCMO Film

As-grown shows no clear preference to easy axis
Fe nanodots' influence aligns spins to in-plane
Spin configuration in the film has been tuned

A Tunable Metal-Insulator Transition

Phys. Rev. Lett. 106, 157207 (2011)

Patterned Local Electric Field

Resistive Switching

Switching Mechanism

Electric field driven percolation of metallic sites

Multistate Dynamic Switching

Summary

Spatial dimension ~ electron phase separation

- Emergent transport properties
- Dynamics of individual phase domain can be observed
- Time scale of first order phase transition

Electronic nanofabrication

- Electronic Domain shape and density are tunable
- Leading to striking emergent phenomena (large anisotropic resistance, high MIT temperature, multistate memory)

Acknowledgement

Experiments

T. Z. Ward, Hongying Zhai L.F. Yin, Z. Gai, J. Budai, H.W. Guo, X.Y. Xu

Simulations

Shuai Dong, E. Dagotto, X.G. Zhang