
Lecture 17 
As a result of expressions like this, it is clear that it can be very useful, then, to consider the possibility of the angular frequency being considered to be a complex variable, rather than the real variable we have always considered it to be.
In other words, we can write a field 
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Where now, not only are E and 
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 complex (which we do in order to account for phase), but 
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is complex too. This extension of the definition of E is often called the “complex analytic signal” associated with the physical electric field.
Note how damping naturally comes in this formulation. Decompose 
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 into its real and imaginary parts.
            
[image: image5.wmf]r

i

ww

=+G


=>       
[image: image6.wmf](

)

()

00

rr

iitit

t

EtEeEee

ww

+G

-G

==


As usual, the physically significant (i.e. measurable) part of E is the real part 
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Clearly the real part of 
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 corresponds to the frequency of the harmonic oscillation, and the imaginary part corresponds to the temperal damping of the field. (or polarization )

Now that we are free to consider 
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 as a complex variable, we can go back to our integral (*) p.114. It will be instructive to use complex-variable integration methods to evaluate the integral.

Digression: A review of some important results in complex-function theory.
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Complex variable 
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Complex function f(z)

Derivative: as usual 
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If the derivative exists in a region R of the complex plane, f is said to be analytic in R.
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 is analytic at 
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 at all points of which 
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Quite often, functions we are interested in fail to be analytic in a very specific way.

A point at which f fails to be analytic is called a singularity.
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 is called an isolated singularity of f if we can find 
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 such that the circle 
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encloses no singular point other than 
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A specific functional form containing an isolated singularity is 
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 Where 
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 is analytic in a region containing 
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A function of this form is said to have a simple pole of 
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Def.:  if 
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 is called a pole of order n.
ex. 
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has a simple pole at 
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 and a third order pole at 
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It should be clear why functions like this are interesting in linear response theory. Look at the integrand in (*) p.114.
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 has simple poles at 
[image: image30.wmf]1

w

 and 
[image: image31.wmf]2

w

.
Physical significance of the poles:

Note that 
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 and 
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 are the (positive and negative) natural oscillation! (Go back and look at our free-field solution on P.81)
This is a general result: the poles of the response function gives the resonant frequencies of the system.
Back to mathematics:
   If 
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 exist .This is a much more restrictive condition than it is for real variables. The reason is that the limit must exist (and be the same) no matter which direction you approach the point z in the complex plane.
We will not prove the following result, but the main consequence of the analyticity condition turns out to be Cauchy’s theorem:
Suppose g(z) is analytic inside and on a simple closed curve C. Then [image: image111.emf]
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Now let’s consider integrals of functions with a simple pole.

Cauchy’s integral formula

If f(z) is analytic inside and on a simple closed curve C and 
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is any point inside C, then
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Where C is traversed in the positive (counter clockwise) sense 
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Note that the function 
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 has a simple pole of
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Exercise for the reader: you should be able to show that Cauchy’s theorem is a simple special case of this.

Heuristic “derivation” of the integral formula:

First, let’s consider a consequence of Cauchy’s Theorem.

If the integrand is analytic, then the integration curve C can be deformed (within the region of analyticity) and one still has
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This may be seen by deforming the curve as follows 
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Clearly the integral along 
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 “down” cancels the integral along 
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 “up”, so 
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In fact, one can smoothly deform C without changing the value of the integral as long as the deformation does not cross any singularities of g(z).
Now consider 
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Where f(z) is analytic everywhere (so g(z) has one simple pole ).

Thus we can transform the integral 
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 around an arbitrary curve C which endorses the pole to an integral around an infinitesimally small circle surrounding the pole :
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Now, if f(z) is a sufficiently “smooth” function, then in the infinitesimally small region around 
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 defined by 
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,its value will be essentially constant, so 
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By a change of variables
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Write 
[image: image57.wmf]i

ze

q

e

¢

=

 where 
[image: image58.wmf]e

= radius of curve 
[image: image59.wmf]C

¢


            
[image: image60.wmf]i

dzied

q

eq

¢

=


            
[image: image61.wmf]22

0000

00

()()()2()

i

c

i

dzied

fzfzifzdifz

ze

q

pp

q

eq

qp

e

¢

¢

===

òòò

¢

Ñ


Thus we find the Cauchy integral formula 
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Again, this is a heuristic derivation, not a proof, but the result is straightforwardly proved in general.

Definition: If 
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 where f(z) is analytic, then 
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 is called the residue of g at
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Cauchy’s integral formula is thus often recast as 
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If the integrand has multiple poles inside C, e.g. 
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Then since g is analytic everywhere except at
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,
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,C can be deformed as we have seen previous .
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The integrations along the straight lines between the poles cancel (since the directions are opposite), so 
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Thus 
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In general, if g has multiple poles within C 
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The proof is an extension of the argument above 
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This is actually all the complex-variable calculus we will need. We are trying to evaluate
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The integral has two simple poles in the upper half plane 
Note that the integral we want is along the real axis from
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We can evaluate the integral using Cauchy’s integral formula if we pick the curve C wisely.
(1) Consider times t<0
Choose C to be a semicircle in the lower half plane:
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Why choose this curve ?  
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a) the integral we want is from –R to R along the real axis (with a minus sign from the direction )

b) along the semicircle, 
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R is large (
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Now, when 
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=>when t<0,
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Thus 
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By Cauchy’s Theorem 
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 also, since there are no poles inside C

Therefore 
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Therefore 
[image: image96.wmf](

)

t

c

=

0 for t< 0
This is exactly what causality requires!

The response function must be zero for negative times, and our harmonic oscillator solution has now been explicitly shown to satisfy this condition.
(2) consider times t> o 
Clearly, we expect a nonzero result here. Now, we choose our curve in the upper half phase:
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Now

     
[image: image98.wmf](

)

(

)

12

1

121221

2Re

ww

w

p

w

wwwwwwww

¥

-¥

=

å

ò

éù

+=+

òò

êú

----

ëû

Ñ

c

itit

it

C

isidues

eee

d


Using the same argument as before, (proof left for reader)
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And  
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Where
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Note that:

(1)
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) guarantees causality 
(2) Damped oscillation (includes renormalized frequency)
(3) amplitude proportional to 
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 as in frequency domain 

(4) it’s a sine oscillation , not a cosine !

Of course, now that we have
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, the time-dependent polarization can be found for an arbitrary driving field E(t) via the convolution integral .
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