
Lecture 22 

Since the goal of geometrical optics is to describe propagation solely in 

terms of rays (and not even mentioning wave surfaces ), we should try to 

obtain a differential equation which governs the ray path directly. 

Consider the rate of change of ˆns  along a ray: 
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 “ray equation “ 

Given ( )n r  and an initial ray direction 0Ŝ of the light, this 

differential equation governs the path taken. 

In words, the change in the optical path along the path is given by 

the gradient in the index of refraction. 

- A reminder on differential line elements 
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ds= length element along curve  

let’s consider some very simple examples. 

(i) n=constant  => 0n   

 ˆ( ) 0
d

ns
ds

  => ŝ = constant  

 Ray propagates in a straight line (as was the case for all the 

examples i-iii on P.163-4).  

（ii） n varies along only one axis, e.g. the y axis, and the ray travels 

parallel to that axis . 
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As expected, the ray does not change direction. 

However, as the index changes, the optical path length traversed in a unit 

distance changes directly with n. 

(ii) n varies only in one direction, e.g. n=n(y), and the ray starts out 

orthogonally, e.g. 0
ˆ ˆS x  
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 (if n increases with height)         (if n decreases with height)  

 The ray changes direction with propagation 



(iv) Extending this example to the most general case, with n=n(y) and 

0 0 0
ˆ ˆ ˆsin cosS x y                    

The vector ray equation can be split  

into three component equations  
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where   = direction consine along z axis               

The z equation says n  = constant, but 
0 0   since the ray is in the xy 

plane =>  =0  

 The ray stays in the xy plane. 

The x equation gives 0 0sin constant sin  n n  

Thus Snell’s law is locally obeyed 

 

Note if 0
dn

dy
  , then the ray  

Gradually turns towards the y  

axis (just as your Snell’s law  

Intuition says it should!) 

 

 

 



Note that we can say more generally, that as a ray propagates, it bends 

towards the region of higher refraction index.  

Note also that since ŝ  is a unit vector, the y-equation in our example (iv) 

does not give any information beyond that given by the x-equation. 

We will use the ray equation to solve some representative problems in 

propagation in inhomogeneous media, but before more familiar principle 

of geometrical optics, namely Fermat’s Principle, which we accomplish 

via the eikonal equation. 

 

Fermat’s Principle 

There are various statements of Fermat’s Principle, but the simplest (and 

loosest) is: 

“Of all the paths light might take between two points, the actual path 

taken is the one that requires the least time.” 

The time required to go from A to B is  
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dt    

Where the integral is along the path. 

Now the differential time element is related to the optical path length 

element by cdt nds  

So  
B B

A A

c dt nd   (so least time shortest optical path) 

Therefore we need to consider the integral over the optical path length. In 



order to do this, we begin with the eikonal equation  

           ˆS ns   

From vector calculus, we know that the curl of any gradient is equal to 

zero, so we have  

              ˆ 0S ns     

We can integrate this over any open surface to obtain    
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ns da    (e.g. ˆda dxdyz  ) 

Stokes’s theorem gives  
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Where C is the closed curve bounding A. 

This result is known as the Lagrange integral invariant . 

Lagrange’s integral invariant gives us an easy proof of Fermat’s Principle: 

- Consider a ray which passes through points 1P  and 2P  along a 

curve C  

- Consider another curve C also passing through 1P  and 2P  

wavefront  

        

·applying lagrange’s invariant to the loop: 
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·along C , ŝ || dr  since C  is a ray , and ŝ  lies along the ray (  to 

wavefronts) 
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·by the triangle inequality  ŝdr ds  

     (Equality if and only if the curve lies along a ray, i.e.   to 

wavefronts) 

 C C
nds nds   

With equality if C C  at every point  

In words:  

“The path of wavefront normals is also the path of least time (or 

equivalently shortest optical path length).” 

 

In order to obtain Fermat’s Principle from this, we follow a clever 

argument given in Born + Wolf 3.3.2. 

1. Consider a family of rays, along one of which light propagates from 1P  

to 2P . 



 

C  = actual path from 1P to 2P . 

C = arbitrary curve (a possible path) joining 1P to 2P . 

Two adjacent wavefronts intersect C  at 
1Q  and 

2Q , and C at 
1Q  and 

2Q . 

2Q   is on ray Cwhich passes through 1Q  as shown . 

2. Apply Lagrange’s integral invariant to the triangle 1 2 2Q Q Q   
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3. Last time, we saw that ŝ wavefronts, so  
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4. We also saw last time that the optical path length between any two 

pairs of points on two wavefronts is the same, i.e. 
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5. Triangle inequality (or definition of dot product of two vectors) implies  
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Equality is obtained only when dr  is parallel to ŝ , and that is true 

only along a ray. 

6. Combining the results in 4 and 5 yields  
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7. This is true for all segment (adjacent wavefronts) between 1P  and 2P , 

so we can integrate, yielding  

       C C
nds nds   

Equality would be obtained if (and only if)  
1 21 2

ˆn ( )Q QQ Q
s dr nds  , i.e. 

ŝ and dr  are parallel at every point on the ray .  

This is true only if 1 2
Q Q  is an actual ray  

(which is the case on our picture only if 2 2Q Q   in every segment of the 

path, and hence if C C !) 

Thus we have the conclusion that the optical path length taken by a ray is 

shorter than any other path from 1P  and 2P . 

This could be considered an alternative, but completely equivalent, 

statement of Fermat’s Principle. 

Trivial example: n = constant (homogeneous medium) 

Fermat => light travels in a straight line  



   

Law of Reflection  

It is a simple exercise in freshman 

calculus to verify that the shortest path in 

which light can go from 
1P  to 

2P  by 

bouncing off a surface satisfies
i r  . 

(For proof, see Guenther P.136).  

 

Snell’s Law  

It is an equally simple exercise to show 

that the shortest optical path from 1P  to 

2P  satisfies 

        1 1 2 2sin sinn n   

(For proof, see Guenther P.137- you should 

go through it if you’ve never seen it before.) 

Intuition: recall the “drowning swimmer” analogy! What path will 

minimize the time to get to the drowning swimmer? You run more of the 

distance than you swim, since 1 2V V , so you run on the path satisfying 

1 2

1 2

1 1
sin sin

V V
  . 



Fermat and Optical Imaging  

If all the rays in a certain region of point 
1P  (the “object”) converge to a 

point
2P , then

2P  is said to be an image of
1P . An optical system that 

collects the rays from 
1P  and redirects them to 

2P  is called an imaging 

system. 

 

Thus, according to Fermat’s Principle, all the rays from 
1P  to 

2P  must 

travel exactly the same path length. (And they are all, of course, the 

minimum path length.) 

In fact, we shall see that one way to calculate or design an imaging 

system is to demand that all the rays have the same path length. 

 

Generalized Fermat’s Principle 

We begin by noting that of our imaging system, a given ray has a ray 

immediately next to it which also goes from 1P  to 2P  with the same 

path length. 

Thus the path length of our given ray is not a local minimum. 

Note also that for our reflection problem, the ray path satisfying i r   

is not even a global minimum, although it is a local minimum. The global 



minimum is the straight line from 
1P  to

2P ! 

 

(Of course, the straight line from 
1P  to 

2P  is also a local minimum.) 

Thus it is more accurate to give a more general statement of Fermat’s 

Principle: 

   The optical path traversed from  1P  to 2P  is that for which the 

integral  

        
2

1

P

P
nds  

is stationary . 

By “stationary”, we mean that an arbitrarily small displacement of the 

path about the true path will show that the true path is a local minimum, 

or result in no change in the optical path.  



 

Mathematically, this is often expressed as  
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This is the proper mathematical statement of Fermat’s Principle. 

(note the conceptual similarity to the first derivative =0 giving the 

stationary points of a function.) 

Fermat’s Principle thus stated is very useful conceptually, and provides a 

framework for understanding many optical phenomena. As a calculational 

tool, however, it is not so useful. The general problem of determining a 

path for which the integral is stationary forms the field of mathematics 

called the calculus of variations.  

We need to use only the central result of the calculus of variations. This is 

the following. 

1. Suppose we parameterize a path by   

2. The path is some unknown function  g , which goes from 1P  to 2P   

3. We want to find the stationary points of 2

1
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F g d

d
 where F 



is a known “functional ” of   and the unknown function g  

4. Theorem : a necessary and sufficient condition that the integral be 

stationary is that  
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This is known as the “Euler differential equation” associated with the 

stationary values of the integral. 

Thus we do not solve for the path via the Fermat integral directly, but 

by solving the associated Euler differential equation. 

We want the stationary points of  
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We have n = n (x, y, z ), and  

            
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We begin by parameterizing the path 

      ( ), ( ), ( )    x x y y z z  

Where   = normalized distance along path => 
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Where  = 0 at 1P  

       = 0 at 2P  

 
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Let’s consider the Euler eqn. associated with x  
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Now a path length elements ds is related to d  by  
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Also note that  
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Doing the same thing for y and z gives  
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      ,  =y, z direction cosines 

These three equations can be expressed in vector form as  

 ˆ
d

ns n
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This is just the ray equation that we obtained earlier from the eikonal 



equation! 

In other words, the equation for the ray path that satisfies Fermat’s 

Principle is equivalent to the Euler differential equation for the stationary 

points of the integral nds . 

Thus we have proved that the ray equation is completely equivalent to 

Fermat’s Principle. 

To summarize: 

      Maxwell’s Wave equation  

           h a r m o n i c  w a v e s    

   Helmholtz eqn. 

        0   

Eikonal eqn.      

                   ray equation  

Fermat’s Principle 


