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We propose a general variational principle for mapping the interacting systems in continuous space to lattice
models. Based on the principle, we derive a set of self-consistent nonlinear equations for the Wannier functions
(or, equivalently for the Bloch functions). These equations show that the Wannier functions can be strongly
influenced by the interaction and be significantly different from their non-interacting counterparts. The approach
is demonstrated with interacting bosons in an optical lattice, and illustrated quantitatively by a simple model of
interacting bosons in a double well potential. It is shown that the so-determined lattice model parameters can
be significantly different from their non-interacting values.
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Although the real condensed matter systems al-
ways live in the continuous space, it is not uncom-
mon to use lattice models to describe them, for ex-
ample, many systems can be well described by the
Hubbard model.[1,2] Traditionally, the lattice model is
often intuitively motivated, and the choice of Wannier
functions[3] used in the mapping from the continuous
space to the lattice is casual. This lack of rigor in
choosing Wannier functions was noticed by Kohn and
he proposed a variational approach to pick the “best”
Wannier function. However, his approach relies on
the choice of the trial localization function and the re-
sultant Wannier functions can not be regarded as the
best even in principle.[4]

This issue is becoming more urgent with the de-
velopments in ultra-cold atom systems. For the ultra-
cold atom systems, the experiments have reached
the high precision to clearly demonstrate the vari-
ation of effective lattice model parameters, such as
the strength of the on-site repulsion with the num-
ber of atoms per site.[5,6] In the traditional electron
systems, there have also been efforts to combine the
first-principles density functional calculations with the
strong-correlation techniques, and the latter is usually
based on the lattice models.[7] These developments are
calling for the more rigorous theoretical basis for prop-
erly mapping an interacting system from the contin-
uous space to the lattice space. This issue has been
the focus of many theoretical efforts.[7−15] However,
the theory is still unsatisfactory because there exists
no generally accepted criteria for what the best set of
Wannier functions is.

In this Letter we propose a general variational
principle for mapping an interacting system in contin-
uous space to a lattice model: the choice of an incom-
plete set of Wannier functions minimizes the calcu-
lated ground state energy of the lattice model. Based
on the principle, we derive a set of self-consistent non-

linear equations for the Wannier functions (or, equiv-
alently, the corresponding Bloch functions), with the
coefficients of the equations expressed in the correla-
tion functions of the lattice model. As a result, these
nonlinear equations have to be solved self-consistently
with the lattice model. Even though the approach is
general, we demonstrate it with interacting boson in
an optical lattice, and eventually illustrated it quanti-
tatively using a simple model of interacting bosons in a
double well potential. It is shown that so-determined
lattice model parameters can be significantly different
from their non-interacting values.

To illustrate our approach, we consider the map-
ping of an interacting bosonic cold-atom system in the
presence of the periodic potential to a single-band lat-
tice model. The extensions to the fermionic systems
and/or the multi-band lattice models are straightfor-
ward. The Hamiltonian in the continuous space can
in general be written as

𝐻̂ =

∫︁
𝑑𝑟 𝜓†(𝑟)

[︁
− ~2

2𝑚
∇2 + 𝑉 (𝑟)

]︁
𝜓(𝑟)

+
1

2

∫︁
𝑑𝑟𝑑𝑟′

[︁
𝜓†(𝑟)𝜓†(𝑟′)𝑈(|𝑟 − 𝑟′|)𝜓(𝑟′)𝜓(𝑟)

]︁
,

(1)

where 𝑚 is the mass of the atom, 𝑉 (𝑟) is a peri-
odic potential and 𝑈(|𝑟|) is the interaction between
two atoms. Under the single-band approximation, the
bosonic field operator 𝜓(𝑟) can be expanded as

𝜓(𝑟) =
∑︁
𝑗

𝑎̂𝑗𝑊𝑗(𝑟), (2)

where 𝑊𝑗(𝑟) =𝑊 (𝑟 − 𝑟𝑗) is the Wannier function at
site 𝑗 and 𝑎̂𝑗 is the associated annihilation operator.
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The corresponding single-band lattice model reads

𝐻̂𝑠𝑏 = −
∑︁
𝑗1𝑗2

𝐽𝑗1𝑗2 𝑎̂
†
𝑗1
𝑎̂𝑗2 +

𝑗3𝑗4∑︁
𝑗1𝑗2

𝑈𝑗1𝑗4𝑗2𝑗3 𝑎̂
†
𝑗1
𝑎̂†
𝑗2
𝑎̂𝑗3 𝑎̂𝑗4 .

(3)
The parameters are given by

𝐽𝑗1𝑗2 = −
∫︁
𝑑𝑟𝑊 *

𝑗1(𝑟)𝐻0𝑊𝑗2(𝑟), (4)

𝑈𝑗1𝑗4𝑗2𝑗3 =
1

2

∫︁
𝑑𝑟𝑑𝑟′

[︁
𝑊 *

𝑗1(𝑟)𝑊𝑗4(𝑟)

× 𝑈(|𝑟 − 𝑟′|)𝑊 *
𝑗2(𝑟

′)𝑊𝑗3(𝑟
′)
]︁
,

(5)

where 𝐻0 ≡ − ~2

2𝑚∇2 + 𝑉 (𝑟).

Further approximations for 𝐻̂𝑠𝑏 are often needed.
For instance, to obtain the well-known Bose-Hubbard
model, one keeps only two terms, the nearest neigh-
bor tunneling and the on-site interaction. Various ex-
act or approximated many-body techniques, such as
direct diagonalization, Gutzwiller projection,[16] den-
sity matrix renormalization group (DMRG),[17] time-
evolving block decimation (TEBD),[18] or quantum
Monte Carlo,[19] can be employed to solve the result-
ing simple lattice model. It is important to observe
that the solution, no matter what approximations are
employed to get it, can be considered as a trial wave-
function of a functional of the Wannier functions.

The ground state |𝐺𝑡⟩ in the single-band ap-
proximation can be formally written as |𝐺𝑡⟩ =

𝐹 (𝑎̂†
𝑗)|vaccum⟩, where 𝐹 is a certain function. The

Wannier function in Eq. (2) is usually pre-determined.
Here the Wannier function is not known a priori. We
look for the Wannier functions that minimize the sys-
tem’s single-band ground state energy,

𝐸𝐺 = ⟨𝐺𝑡|𝐻̂|𝐺𝑡⟩ = ⟨𝐺𝑡|𝐻̂𝑠𝑏|𝐺𝑡⟩, (6)

where 𝐻̂𝑠𝑏 is the usual single-band lattice Hamiltonian
We achieve the minimization of the ground state

energy 𝐸𝐺 by varying the Wannier function under the
orthonormal constraints, ℎ𝑗 =

∫︀
𝑑𝑟𝑊 *(𝑟)𝑊 (𝑟−𝑟𝑗) =

𝛿0,𝑗 . According to the Feynman–Hellman theorem, we
have

𝛿(𝐸𝐺 −
∑︀

𝑗 𝜇𝑗ℎ𝑗)

𝛿𝑊 *(𝑟)

= ⟨𝐺𝑡|
𝛿𝐻̂𝑠𝑏

𝛿𝑊 *(𝑟)
|𝐺𝑡⟩ −

∑︁
𝑗

𝜇𝑗𝛿ℎ𝑗
𝛿𝑊 *(𝑟)

= 0, (7)

where 𝜇’s are Lagrangian multipliers. After straight-
forward computation, we obtain a nonlinear equation
for the Wannier functions∑︁

𝑗

𝜇𝑗𝑊 (𝑟 − 𝑟𝑗)

=
∑︁
𝑗1,𝑗2

⟨𝑎̂†
𝑗1
𝑎̂𝑗2⟩𝐻0𝑊 (𝑟 + 𝑟𝑗1 − 𝑟𝑗2)

+

𝑗3𝑗4∑︁
𝑗1𝑗2

⟨𝑎̂†
𝑗1
𝑎̂†
𝑗2
𝑎̂𝑗3 𝑎̂𝑗4⟩

∫︁
𝑑𝑟′

[︁
𝑊 *(𝑟′ + 𝑟𝑗2 − 𝑟𝑗1)

×𝑊 (𝑟′ + 𝑟𝑗2 − 𝑟𝑗4)𝑈(|𝑟′ − 𝑟|)
]︁
𝑊 (𝑟 + 𝑟𝑗2 − 𝑟𝑗3).

(8)

It is clear that the above equation depends on the
solution of the single-band lattice model (3). Before
solving Eq. (3), one can employ various approxima-
tions, for example, by choosing to keep only the near-
est neighbor tunneling 𝐽 and the on-site interaction
𝑈 in the single-band Hamiltonian (3). Various many-
body techniques[16−19] can be employed to solve the
resulting simple lattice model. The solution, no mat-
ter what approximations are employed to get it, is still
a valid trial wave-function of a functional of the Wan-
nier functions. To implement the variational principle
Eq. (6), it is essential to keep all terms in Eq. (8), even
when the corresponding terms in Eq. (3) (e.g., off-site
interaction) had been ignored in solving the lattice
model. For instance, if the interaction terms are ig-
nored when solving Eq. (3), Eq. (8) becomes the usual
Hartree–Fock approximation. It is important to note
that Wannier functions obtained in this way not only
depend on the approximations applied to Eq. (3), but
also depend on the many-body technique employed
to solve the resulting lattice model. We call such an
approach a self-consistent single-band approximation.

As an example, we consider the case of a deep
Mott-insulator regime, where the ground state has the
form |𝑛0, 𝑛0, . . . , 𝑛0⟩ with 𝑛0 being the average num-
ber of particles per site. In this case, we have

⟨𝑎̂†
𝑗1
𝑎̂𝑗2⟩ =𝑛0𝛿𝑗1,𝑗2 , (9)

⟨𝑎̂†
𝑗1
𝑎̂†
𝑗2
𝑎̂𝑗3 𝑎̂𝑗4⟩ =𝑛20𝛿𝑗1,𝑗3𝛿𝑗2,𝑗4 + 𝑛20𝛿𝑗1,𝑗4𝛿𝑗2,𝑗3

− (𝑛20 + 𝑛0)𝛿𝑗1,𝑗2𝛿𝑗2,𝑗3𝛿𝑗3,𝑗4 .
(10)

As a result, Eq. (8) is simplified and has the form for
𝑈(|𝑟|) = 𝑔0𝛿(𝑟),
𝜇0

𝑁0
𝑊 (𝑟) =𝐻0𝑊 (𝑟) + 𝑔0𝑛0

∑︁
𝑟𝑗 ̸=0

|𝑊 (𝑟 − 𝑟𝑗)|2𝑊 (𝑟)

+ 𝑔0(𝑛0 − 1)|𝑊 (𝑟)|2𝑊 (𝑟). (11)

When the off-site terms, which are often very small,
are ignored, the above equation has the form of the
familiar Gross–Pitaevskii equation.[20,21] Therefore, it
is very clear that the Wannier function is greatly in-
fluenced by the interaction whenever 𝑛0 ≥ 2.

A periodic system can be described alternatively
with Bloch functions. If we place the system in a box
of 𝑁 lattice sites, the Wannier functions are related
to Bloch functions as

𝑊 (𝑟 − 𝑟𝑛) =
1√
𝑁

∑︁
𝑘

𝑒−𝑖𝑘·𝑟𝑛Ψ𝑘(𝑟), (12)

where Ψ𝑘 is a Bloch function with Bloch wave num-
ber 𝑘 and is normalized to one. In terms of Bloch
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functions, the nonlinear equation (8) becomes a set of
nonlinear equations

𝜈𝑘Ψ𝑘(𝑟) =𝐻0Ψ𝑘(𝑟) +
∑︁

⟨𝑘1𝑘𝑘3𝑘4⟩

𝑃𝑘1𝑘𝑘3𝑘4

∫︁
𝑑𝑟′

·
[︁
Ψ*

𝑘1
(𝑟′)Ψ𝑘3(𝑟

′)𝑈(|𝑟′ − 𝑟|)
]︁
Ψ𝑘4(𝑟),

(13)

where ⟨𝑘1𝑘𝑘3𝑘4⟩ stands for summation with the con-
straint 𝑘1 + 𝑘 = 𝑘3 + 𝑘4 + 𝐾, and 𝑃𝑘1𝑘𝑘3𝑘4

=

⟨𝑏̂†𝑘1
𝑏̂†𝑘𝑏̂𝑘3

𝑏̂𝑘4
⟩/⟨𝑏̂†𝑘𝑏̂𝑘⟩; 𝑏̂𝑘 = 1√

𝑁

∑︀
𝑛 𝑎̂𝑛𝑒

−𝑖𝑘·𝑟𝑛 , and

𝜈𝑘 = ( 1
𝑁

∑︀
𝑛 𝜇𝑛𝑒

−𝑖𝑘·𝑟𝑛)/⟨𝑏̂†𝑘𝑏̂𝑘⟩. 𝐾 is a reciprocal lat-
tice. In deriving Eq. (13), we have used the fact that
the Bloch functions of different wave numbers 𝑘 are
orthogonal to each other automatically and, therefore,
one can have an equation for each different Bloch wave
number 𝑘.

We now apply Eq. (13) in the superfluid regime,
where the Bogoliubov mean-field theory can be
applied.[22] For the simple interaction, 𝑈(|𝑟|) =
𝑔0𝛿(𝑟), the mean-field Hamiltonian is

𝐻̂𝑏ℎ = 𝜖0𝒩0 + 𝑈0𝒩 2
0 +

∑︁
𝑘 ̸=0

[︁
𝜖𝑘 + 4𝒩0𝑈𝑘

]︁
𝑏̂†𝑘𝑏̂𝑘

+
∑︁
𝑘 ̸=0

𝒩0𝑈𝑘

(︁
𝑏̂†𝑘𝑏̂

†
−𝑘 + 𝑏̂𝑘𝑏̂−𝑘

)︁
, (14)

where 𝒩0 is the number of atoms in the state 𝜓0,
𝜖𝑘 =

∫︀
𝑑𝑟𝜓*

𝑘𝐻0𝜓𝑘, and 𝑈𝑘 = (𝑔0/2)
∫︀
𝑑𝑟|𝜓𝑘|2|𝜓0|2.

Following the standard procedure,[22] we find

𝑃𝑘1𝑘𝑘3𝑘4
= 𝑣2𝑘1

(𝛿𝑘1,𝑘4
𝛿𝑘,𝑘3

+ 𝛿𝑘1,𝑘3
𝛿𝑘,𝑘4

)

+
𝑢*𝑘𝑢𝑘3𝑣𝑘3

𝑣𝑘
𝛿−𝑘1,𝑘𝛿−𝑘3,𝑘4

− 2𝒩0𝛿𝑘1,0𝛿𝑘,0𝛿𝑘3,0, (15)

where ℰ𝑘 =
√︀
𝜂2𝑘 − 4𝒩 2

0𝑈
2
𝑘; 𝑢0 = 𝑣0 =

√
𝒩0, 𝑢2𝑘 ̸=0 =

1 + 𝑣2𝑘 ̸=0; and 𝑣2𝑘 ̸=0 = [𝜂2𝑘/(𝜂
2
𝑘 − 4𝒩 2

0𝑈
2
𝑘)− 1]/2, with

𝜂𝑘 = 𝜖0𝑘 − 𝜖00 +4𝒩0𝑈𝑘 − 2𝒩0𝑈0. This leads to a set of
simplified nonlinear equations for Bloch functions,

𝜈0Ψ0 =𝐻0Ψ0 + 𝑔0𝒩0|Ψ0|2Ψ0 + 2𝑔0
∑︁
𝑘′̸=0

𝑣2𝑘′|Ψ𝑘′|2Ψ0+

𝑔0
∑︁
𝑘′̸=0

𝑢𝑘′𝑣𝑘′|Ψ𝑘′|2Ψ0, (16)

and for 𝑘 ̸= 0

𝜈𝑘Ψ𝑘 =𝐻0Ψ𝑘 + 𝑔0(2 +
𝑢𝑘
𝑣𝑘

)𝒩0|Ψ0|2Ψ𝑘+

𝑔0
∑︁
𝑘′ ̸=0

[︁
𝑢𝑘′𝑣𝑘′

𝑢𝑘
𝑣𝑘

+ 2𝑣2𝑘′

]︁
|Ψ𝑘′ |2Ψ𝑘.

(17)

Since 𝑢𝑘 and 𝑣𝑘 themselves depend on 𝜓𝑘, the above
two equations have to be solved self-consistently. Note
that in the above derivation we have assumed that the
lattice potential is symmetric, 𝑉 (𝑟) = 𝑉 (−𝑟), so that

𝜓−𝑘 = 𝜓*
𝑘. We have also ignored the scattering pro-

cesses with nonzero 𝐾.
Finally, we use a one-dimensional double-well po-

tential under a periodic boundary condition to illus-
trate our theory. The two Wannier functions for the
left well and the right well are related to the ground
state and the first excited state for the double-well
potential as follows:

𝑊𝑙 =

√
2

2
(Ψ0 +Ψ1), 𝑊𝑟 =

√
2

2
(Ψ0 −Ψ1), (18)

where Ψ0 and Ψ1 are chosen such that they are both
positive in the left well. These two Wannier functions
satisfy the nonlinear equation (8). The corresponding
lattice model is

𝐻̂2 =
[︁
− 𝐽 + 2(𝑁0 − 1)𝑈3

]︁
(𝑎̂†

𝑙 𝑎̂𝑟 + 𝑎̂†
𝑟𝑎̂𝑙)+

+ 𝑈2(𝑎̂
†
𝑟𝑎̂

†
𝑟𝑎̂𝑙𝑎̂𝑙 + 4𝑎̂†

𝑙 𝑎̂𝑙𝑎̂
†
𝑟𝑎̂𝑟 + 𝑎̂†

𝑙 𝑎̂
†
𝑙 𝑎̂𝑟𝑎̂𝑟)

+ 𝑈(𝑎̂†
𝑙 𝑎̂

†
𝑙 𝑎̂𝑙𝑎̂𝑙 + 𝑎̂†

𝑟𝑎̂
†
𝑟𝑎̂𝑟𝑎̂𝑟), (19)

where 𝑈2 = 𝑈𝑙𝑙𝑟𝑟, 𝑈3 = 𝑈𝑙𝑟𝑟𝑟, and 𝑈 = 𝑈𝑙𝑙𝑙𝑙.
We choose the double-well potential as a part of

the one dimensional optical lattice created experimen-
tally in Ref. [23]. Thus, the double well potential is
given by 𝑉 (𝑥) = 𝑉0 sin

2(𝑘𝐿𝑥), where 𝑘𝐿 is the wave
number of the laser that creates the potential. Due
to the lateral confinement, the interaction strength 𝑔0
is given by 𝑔0 = (4𝜋~2𝑎𝑠/𝑚)(𝑚𝜔⊥/(2𝜋~)) = 2~𝜔⊥𝑎𝑠,
where 𝑎𝑠 is the s-wave scattering length and 𝜔⊥ the
perpendicular confinement frequency. In our numer-
ical calculations, the Hamiltonian in Eq. (19) is di-
agonalized directly and Eq. (8) is solved with the
nonlinear equation solver in MATLAB. We use 𝑐 =
𝜋𝑚𝑔0/(~2𝑘𝐿) as the dimensionless interaction param-
eter.

The numerical results for the dependences of 𝐽
and 𝑈 on the well depth and interaction strength are
shown in terms of the ratios 𝐽/𝐽0 and 𝑈/𝑈0 in Fig. 1.
𝐽0 and 𝑈0 are the tunneling parameter and on-site in-
teraction obtained with single-particle Wannier func-
tion.

These numerical results have confirmed our in-
tuitive understanding that the Wannier function is
broadened as the interaction strength 𝑐 increases.
This is evidently illustrated by the decrease of 𝑈/𝑈0

with the increase of 𝑐 shown in the right column of
Fig. 1. Although the broadening of the Wannier func-
tion always leads to the decrease of 𝑈/𝑈0, it does not
always lead to the increase of 𝐽/𝐽0 as one would in-
tuitively expect. This is demonstrated such that 𝐽/𝐽0
generally decreases as 𝑐 increases in the right col-
umn. This is also supported by the fact that 𝐽/𝐽0
can decrease with 𝑈/𝑈0 as 𝑣 increase in Figs. 1(a2)
and 1(a3). This rich behavior of 𝐽/𝐽0 is due to the
fact that 𝐽 depends not only on the size of the Wan-
nier function tail but also on the detailed oscillatory
structure of the tail. Nevertheless, one can still have
some intuitive understanding of the behavior of 𝐽/𝐽0.
For the right column, one can roughly understand the
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decrease of 𝐽/𝐽0 with increasing 𝑐 as the result of the
effective reduction of band width, which becomes nar-
rower as the increased interaction enhances the band-
energy at the 𝑘 = 0 state more quickly than 𝑘 = 𝜋
state.

We also notice that 𝐽/𝐽0 and 𝑈/𝑈0 does not vary

much with 𝑐 when there is only one particle per well
on average. As shown in Figs. 1(a1) and 1(b1), the
change of 𝐽/𝐽0 and 𝑈/𝑈0 caused by the interaction
is less than 1%. However, the change becomes signif-
icant when there is more than one particle per well.
This is evident in the lower four panels of Fig. 1.
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Fig. 1. The tunneling parameter 𝐽 and the on-site interaction 𝑈 as functions of the double-well depth and the
interaction strength. For (a1, a2, a3), 𝑐 = 2.5; for (b1, b2, b3), 𝑣 = 5.0. The left vertical axis is for the solid line
while the right one is for the dashed line. The results for 𝑐 < 0.1 are not accurate due to the numerical difficulties
caused by the intrinsic structure problem in the system. The energy unit is the recoil energy 𝐸𝑟 = ~2𝑘2𝐿/2𝑚. The
inset in (a1) shows how 𝐽 and 𝑈 change with 𝑣.

We expect that the behaviors of 𝐽/𝐽0 and 𝑈/𝑈0 re-
vealed in Fig. 1 are not limited to the double-well sys-
tems, and should hold generally for ultracold bosons
in optical lattices. This is to be confirmed by future
work.

Currently in typical experiments, ultracold atoms
are also trapped by a harmonic potential.[20,21] Con-
sequently, the wells are not identical to each other.
Also a random potential can be added to make the
wells non-identical.[24] Nevertheless, single-band ap-
proximation can still be applied as long as the dif-
ference between the site energies is smaller than the
energy gaps between the ground state and the first
excited state in the wells. For simplicity, we consider
a one-dimensional potential of 𝑁 wells, which are not
identical. In this case, the Wannier functions for the
lowest “band” can be defined as

𝑊𝑗(𝑥) =
1√
𝑁

𝑁−1∑︁
𝑘=0

𝑒𝑖
2𝑘𝑗𝜋
𝑁 𝜓𝑘, 𝑗 = 0, 1, . . . , 𝑁 − 1,

(20)
where 𝜓𝑘’s are the lowest 𝑁 eigenstates. Our varia-
tional approach can be easily adopted to this case with
just one modification. Since the Wannier functions at
different sites have different shapes, the constraint is
now ℎ𝑛,𝑚 =

∫︀
𝑑𝑥𝑊 *

𝑛(𝑥)𝑊𝑚(𝑥) = 𝛿𝑛,𝑚. As a result,
one obtains a set of nonlinear equations for the Wan-
nier functions. Since everything is straightforward, we
shall not write out the equations here.
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