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Fundamentals of Epitaxy
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2D Electron System in Strained Si
in collaboration with D.C. Tsui & group, Princeton Univeristy

• The compositionally graded relaxed SiGe buffer layers: the controlled plastic

Other collaborations: Marc Kastner (MIT); Jagadeesh Moodera (MIT magnet lab)

• The compositionally graded, relaxed SiGe buffer layers: the controlled plastic 
relaxation of misfit strain that forms the foundation for the fabrication of strained Si;

• The magnitude of strain required for effective separation between the 2- & 4-fold 
conduction band valleys: ~1%;y ;
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Modulation Doped 2DES

2-D electron gas

Relaxed SiGe buffer layer on Si (001)
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The “Usefulness” of 2-dimensional Electron Systems in Strained Si

• Room T applications:

– Mobility being limited by phonon scattering;

Hi h i d it th d f l t– High carrier density: the need for large current 
drive;

– The importance of the out of plane effective mass;

• Low T transport research:

– High mobility: fine features in the transport 
characteristics;characteristics;

– Low carrier density: the importance for correlated 
behaviors;

A li i l i l i ?– Application: topological quantum computing?

– Understanding correlated electron behaviors is at
the forefront of condensed matter physics; Scientific American, p.56, April 2006, 
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Integer Quantum Hall Effect: electron localization

2D density of states of electrons (B=0):

( ) 2

*mEg =

The density of state increases and the 2D electrons pack closer together with increasing B 

( ) 2hπ
g
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Fractional Quantum Hall Effect: Composite Fermions

J P Ei t i t l Ph E 6 29 (2000)J.P. Eisenstein, et al, Phys E, v.6, 29 (2000)

μ~11,000,000 cm2/V-s
2DES in GaAs/AlGaAs

The details of the ρxx-B relation can be visible only if the mobility is high;

Fractional quantum Hall effect: the need to invoke correlated electron behaviors
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Fractional quantum Hall effect: the need to invoke correlated electron behaviors 



What high mobility provides for usWhat high mobility provides for us

Th i bili f l i fi f i h (R & R ) b f l

μ~350,000 cm2/V-s

The in-ability of resolving fine features in the transport (Rxx & Ryy) curves because of low μ.

Th t f hi h id tif i th d i t tt i h i
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The quest for ever higher μ: identifying the dominant scattering mechanism



The quest for lower 2DES density

Th i f l i d i f h d f l d b h i• The importance of low carrier density for the study of correlated behaviors:

The dimensionless density parameter:

E /Ers=Ee-e/EF

Given that Ee-e~ √(ns)/ε and EF~ ns/m*, where ns =carrier density, ε=dielectric 

constant and m*=effective mass.

Therefore: 

rs ~ m*/ ε√(ns)rs  m / ε√(ns) 

To achieve large rs, we need large m*, and small ns. 

• The factors that could limit the achievable carrier density;
– Localization induced by impurities and other inhomogeneity in the sample;
– The uniqueness of 2DES in strained Si: another source for poor homogeneity.
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The Challenges in Achieving Low 2DES Density

Deformation potential calculationRaman Mapping of SSOI Deformation potential calculation
(Mark Kennard, SOITEC)

Amplitude of potential undulation: 7 meV
Spatial correlation: ~1 um;
Lower limit of carrier density : 5~6x1010cm-2y

Alternatives: avoid dislocation
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An alternative method for fabricating dislocation free strained SiAn alternative method for fabricating dislocation-free strained Si

Oxidation of porous Si Huge volume expansion

Epitaxial growth
(100 nm~400nm)

~ -+
Current Source

Anodizing

intrinsic thin Si

P+ type Si substrate Wafer Holder Platinum Film

AnodeCathode

P-type substrateintrinsic Si

Electrolyte
Teflon Cell

Wet oxidation at 500oC
t i d Si intrinsic Si“Three dimensional impedance engineering forstrained Si

Porous Si Substrate

intrinsic Si

Porous Si Substrate

• US Patent application # : 60/700,448, JeeHwan Kim and Y. H. Xie;

Three-dimensional impedance engineering for

mixed-signal system-on-chip applications”,
Kyuchul Chong and Ya-Hong Xie,
in “Si-based RFIC”, W.Z. Cai, Editor, p.153-216, 
Transworld Research Publishers publisher 2006;
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US Patent application # : 60/700,448, JeeHwan Kim and Y. H. Xie;

• O. Marty, et al., APL v.88, 101909 (2006);
Transworld Research Publishers, publisher, 2006; 



An alternative method for fabricating dislocation free strained Si

After defect etch

An alternative method for fabricating dislocation-free strained Si
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Dislocation-free 100nm thick Si film under 1% tension with strain variation undetectable by Raman



Summary of 2DES in Strained Si

• Sample fabrication (the enabling factor): The continued quest for 2-D electron or 

hole systems with higher mobility and/at carrier density. 

• Physics: 2-D electron and hole systems with increasingly complex energy band 

structures that allows the probing into the complex world of correlated behaviors.
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and other Epitaxy related
Research activities in the Semiconductor Materials Research Laboratory
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Selective-Epi of GaN using Patterned SubstratesSelective Epi of GaN using Patterned Substrates
in collaboration with S.J. Chang, Y.K. Su & groups at National ChengKung University, Taiwan
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U.S. Patent Number 6,495,385, December 17, 2002: "Hetero-integration of Dissimilar Semiconductor Materials," Y.H. Xie



Dark field Transmission Electron Micrographs of GaN on SapphireDark-field Transmission Electron Micrographs of GaN on Sapphire
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Scalable Silicon Tunnel Transistor Technology for Low Power Circuits 
(S2T3) 

DARPA STEEP Program

Jason Woo, PI, EE UCLA 

Gate
DrainSource

Gate
DrainSource

Requirements:
• Carrier concentration as high as possible;
• Abrupt doping concentration gradient

PN+ p+ N+P+ PN+ p+ N+P+

Abrupt doping concentration gradient.

Materials science challenge:
• High dopant concentration while maintaining 100% 

Fully depleted
Box

Fully depleted
Box

in substitutional sites;
• Minimize diffusion while maintaining “good” 
crystalline quality in terms of point defects.
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HRTEM of Ge Spikes Separated by 1 nm Si on Si (001)
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Pushing the Limit on the Abruptness of Compositional Transition
collaboration with Intel @ Oregon
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The rise of grapheneThe rise of graphene
Jason Woo, PI, EE UCLA 

The unique feature: highly anisotropic materialq g y p

The Challenge:
Wafer scale fabrication with 
uniform (1 monolayer) thickness

Semiconductor Materials Research Lab

A. K. Geim1 and K. S. Novoselov, Nature Materials 6, 183 - 191 (2007) 



and other Non-epitaxy 
Research activities in the Semiconductor Materials Research Laboratory
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Understanding the Scaling Limit of PcRAM Technology 
of Chalcogenide Materials

Meta-stable Rocsksalt (a) vs Stable Hexagonal (b) GeSbTe(225)Meta stable Rocsksalt (a) vs Stable Hexagonal (b) GeSbTe(225) 

A.L. Lacaita / Solid-State Electronics 50 (2006) 24–31, Phys. 
Rev. Lett. 96, 055507 (2006)Rev. Lett. 96, 055507 (2006)

F ti l t l t i th i f th i l

Characteristic features: significant difference in optical and electrical properties 
between amorphous and poly-crystalline states.

Semiconductor Materials Research Lab

From optical memory to electronic memory: the size of the programming volume.



The Topics of Research of Our Group

1 The minimum size required for the existence of 3 distinguishable phases1. The minimum size required for the existence of 3 distinguishable phases 

in chalcogenide materials (amorphous, FCC, and HCP); 

2. The phase change kinetics as a function of the volume: the effects of 

interface and surface;

3. The cross-over from nucleation dominated crystallization process to 

th d i t d i ith d i lgrowth dominated regime with reducing volume;

4. Assessment of thermal proximity effect and the implication on 

technology scaling limit.

Semiconductor Materials Research Lab

Work in progress



Nano Patterning: the prerequisite for our researchNano-Patterning: the prerequisite for our research

Requirement: large area uniform coverage of nanometer

Process Schematics of di‐block copolymer patterning

Requirement: large area uniform coverage of nanometer 
dimension features

KOH

Semiconductor Materials Research LabCollaboration T. Russell, U Mass Amherst



Nano Patterning: the prerequisite for our researchNano-Patterning: the prerequisite for our research
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A Quantum Dot Based Electro optic ModulatorA Quantum Dot Based Electro-optic Modulator
for chip-to-chip optical interconnects

• The non zero R L and C in each real electrical wire;• The non-zero R, L, and C in each real electrical wire;
• For high frequency or bit rate, electrical interconnects are prone to data skew and crosstalk

with an ultimate bit rate limit: ( )bps
l
AB 15
2 10×≈

• The rate limit B is determined by the aspect ratio of the interconnects and is <1 Gbps for 
typical chip interconnect geometry;

“Limit to the bit-rate capacity of electrical interconnects from the aspect ratio of the system 

The solution: optical chip-to-chip interconnects; 

Semiconductor Materials Research Lab

architecture”, D.A.B. Miller and H.M. Ozaktas, J. Paral. Distrib. Comput., v.41, 42 (1997).



Schematics of Our Quantum Dot Based Modulator Structure

• Using semiconductor quantum dots operating near saturation absorption as the Using semiconductor quantum dots operating near saturation absorption as the 
electro-absorption medium;
• Employing a dielectric vertical cavity for signal (both the pumping light intensity 
and the modulation effect) amplification;) p ;
• A capacitor as opposed to a current injection device from the circuit perspective;
• Inherently compatible with 2D array architecture.
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Quantum Dot Absorption under External Electric Field

Saturation absorption of QDs
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RF Crosstalk Isolation TechnologyRF Crosstalk Isolation Technology
Substrate impedance engineering

Substrate impedance engineering for Si mixed-signal integrated circuit applications:
• Integration of high performance passive components: inductors + capacitors;
• RF crosstalk isolation;
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