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Geometric Phase for Adiabatic Evolutions of General Quantum States
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The concept of a geometric phase (Berry’s phase) is generalized to the case of noneigenstates, which is
applicable to both linear and nonlinear quantum systems. This is particularly important to nonlinear
quantum systems, where, due to the lack of the superposition principle, the adiabatic evolution of a
general state cannot be described in terms of eigenstates. For linear quantum systems, our new geometric
phase reduces to a statistical average of Berry’s phases. Our results are demonstrated with a nonlinear two-
level model.
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FIG. 1. Evolution of quantum states as the control parameters
R traverse slowly along a closed path O. At the end of the loop,
an individual state (dot) may not come back to itself, but a
collection of states (disk) does. This collection is characterized
by a set of adiabatically invariant actions (illustrated by the disk
area). Different disk shapes represent symbolically distinct dy-
namics at different values of R.
A complete theory for the adiabatic evolution of quan-
tum systems rests on three pillars. First, the adiabatic
theorem dictates that the probability on each instantaneous
eigenstate (nondegenerate) remains constant when the ex-
ternal condition, described by a set of control parameters,
changes slowly in time [1]. Second, besides the usual
dynamical phase, given by the time integral of the eigen-
energy, the phase of an evolving eigenstate has a geometric
part, called Berry’s phase, which depends only on the
geometric path in the parameter space [2]. Third, the
linearity of the Schrödinger equation allows one to write
the evolution of an arbitrary state as a linear superposition
of the eigenstates with amplitudes whose magnitudes and
phases are as prescribed above [3].

For a nonlinear quantum system, such as that described
by the nonlinear Schrödinger equation, the third pillar is
missing. The superposition principle no longer applies.
While it is still possible to define eigenstates and describe
their adiabatic evolution, one is clueless on the evolution of
a general state when the control parameters are changed
slowly. Nonlinear quantum systems have become increas-
ingly important in physics. They often arise in the mean
field treatment of many-body quantum systems, such as
Bose-Einstein condensates (BECs) of dilute atomic gases
[4,5], and as a possible fundamental nonlinear modification
of quantum mechanics [6].

In this Letter we introduce the concept of a geometric
phase for the adiabatic evolution of general quantum states
including noneigenstates. It applies to both linear and non-
linear quantum systems. In the linear case, our geometric
phase reduces to a statistical average of Berry’s phases for
the eigenstates, weighted by the probabilities that the
system finds itself in the eigenstates.

Our effort to define a geometric phase for general quan-
tum states is aided by the fact that quantum systems (linear
or nonlinear) have an exact canonical structure of
Hamiltonian dynamics, which has been known since long
ago but not as widely as it deserves [6,7]. We can thus
introduce classical concepts such as actions and angles to
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describe the motion of the quantum states without any
approximation. The actions remain invariant during an
adiabatic process, and the change in the angles has a
geometric part called Hannay’s angles [8]. Our new geo-
metric phase is found to be related to these Hannay’s
angles in a derivative form. In defining the new phase, an
average is taken over all possible initial states of the same
actions. Therefore, our geometric phase can be viewed as a
phase for a manifold of fixed actions, which is an invariant
subspace of states in the adiabatic process (see Fig. 1).

The physical meaning of our phase is discussed in the
context of a heavy particle interacting with a nonlinear
quantum system. Our phase appears in the effective
Lagrangian for the heavy particle. Similar to the original
Berry’s phase [2], we show that our phase for a general
quantum state can be regarded as a geometric part of a
generalized total phase. In the end, a nonlinear two-level
model is used to illustrate our phase.
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We consider an N-level quantum system governed by a
general nonlinear Schrödinger equation ( �h � 1),

i
d
dt

j i � H� �;  ;R�j i: (1)

Here j i � � 1;  2; . . . ;  N� with  j being its jth compo-
nent over an orthonormal basis; the vector R represents all
the control parameters subject to adiabatic change. For all
problems of physical interest, we can assume that the
system is globally gauge invariant. Therefore, the norm
of the wave function is conserved. When H is independent
of  � and  , Eq. (1) is the usual linear Schrödinger
equation.

Eigenstates for Eq. (1) can be defined as usual,

H�R�j’n�R�i � �n�R�j’n�R�i: (2)

Then for fixed values of R, e�i�n�R�tj’n�R�i is a solution of
the nonlinear Schrödinger equation (1). In the context of
BEC physics, �n plays the role of a chemical potential.
When R varies slowly in time, such a state remains to be a
solution of Eq. (1) with the phase replaced by

R
dt�n�R�

(dynamical phase), minus Berry’s phase defined by

�n�O� �
Z
O
dRh’n�R�ji

@
@R

j’n�R�i: (3)

This phase depends on the path O in the parameter space,
but does not depend on the rate of change in R.

However, it is not clear how a similar geometric phase
can be defined for noneigenstates, which is imperative for
nonlinear quantum systems due to their lack of the super-
position principle as mentioned in the introduction. One
can check that various existing generalizations of Berry’s
phase do not help here [9]. To overcome this difficulty, we
notice a long-known fact [6,7] that the quantum system
Eq. (1) is mathematically equivalent to Hamilton’s equa-
tions of motion with a Hamiltonian energy functional
H � �;  ;R� and Poisson brackets f �

j ;  kg � i�jk. That
is, Eq. (1) can be reformulated as

i
d
dt
 j �

@
@ �

j
H � �;  ;R�: (4)

In this formulation, the eigenstate defined in Eq. (2) is
variationally an extremum solution of the energy func-
tional H , with �n viewed as the value of the Lagrange
multiplier enforcing the conserved norm of a wave func-
tion. We emphasize that this canonical Hamiltonian struc-
ture is exact and applies to both the linear and the nonlinear
Schrödinger equations. It is not related to the usual
classical-quantum correspondence in the limit of �h! 0.
Using the language of Hamiltonian dynamics, the system
of Eq. (1) can be classified into integrable or nonintegrable
as for any classical systems. In this sense, all linear quan-
tum systems are integrable.

We focus on the case that Eq. (1) is locally integrable
even in the presence of nonlinearity. As we point out later,
generalization to chaotic systems is possible. For fixed
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control parameters R, in the integrable regions, the system
can be described by a set of action and angle variables, I �
fI1; I2; . . . ; INg, � � f�1; �2; . . . ; �Ng; the actions are con-
stant while the angles vary in time with frequencies !‘ �
@H =@I‘. In other words, the wave function can be ex-
pressed in terms of these action-angle variables, j i �
j �I;�;R�i, with a (R-dependent) canonical transforma-
tion parametrizing the amplitudes  j with these new var-
iables. When R are time dependent, we can still use the
same expression of the wave function, j i � j �I;�;R�i,
although the action-angle variables will lose the above
simple properties.

However, if R vary slowly in time, the actions continue
to be conserved [10]. In this case, j i changes with time
only through the rotating � and the slowly varying R. This
allows us to do the following expansion:

h jdj i �
XN
‘�1

h j
@
@�‘

j id�‘ � h j
@
@R

j i  dR: (5)

The second term is clearly related to the geometry of the
parameter space R. It motivates us to define our geometric
phase as

��O� �
Z
O
dRh �I;�;R�ji

@
@R

j �I;�;R�i; (6)

where the overbar indicates an average after the integration
along O over all initial angles with the same actions. This
averaging wipes out the dependence of our phase � on the
dynamical angles � and makes it geometric. Such an
averaging technique has been used in defining Hannay’s
angles [8].

The phase � in Eq. (6) is the geometric phase that we
have sought for general quantum states. Two remarks are in
order: (i) One can check that our phase � reduces to �n for
an eigenstate j’ni. (ii) Because of the averaging, the phase
� is a geometric characterization of the manifold of all
states with a given set of actions. Such a manifold is an
invariant subspace in an adiabatic process.

The physical meaning of our phase � can be seen by
considering a coupled system described by the following
Lagrangian:

L � h ji
d
dt

j i �H � �;  ;R� �L0�R; _R�; (7)

where the first two terms are the Lagrangian for the non-
linear Schrödinger Eq. (1) and L0 is a Lagrangian for a
heavy particle moving slowly. In terms of action and angle
variables, the Lagrangian becomes

L � I  _� � h ji
@
@R

j i  _R�H �I;R� �L0�R; _R�:

(8)

Since the angles � change much faster than the particle’s
coordinates R, we can take an average over the angles and
obtain an effective Lagrangian for the dynamics of the
heavy particle,
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L eff � h ji
@
@R

j i  _R�H �I;R� �L0�R; _R�: (9)

Our phase � shows how the fast dynamics of a nonlinear
quantum system influences the heavy particle.

Let us go back to Eq. (5) and examine the other two
terms. After integration, the term on the left becomes

� � i
Z
O
h jdj i �

Z
O
h jHj idt; (10)

which is apparently a dynamical phase. For the first term
on the right of Eq. (5), we have

T �
Z
O

XN
‘�1

d�‘h �I;�;R�ji
@
@�‘

j �I;�;R�i: (11)

We similarly average T over all initial angles. Because of
such an averaging, the integrand in Eq. (11) can be re-
placed with I‘ [11]. Letting 
�‘ be the total change in
angle �‘ for an adiabatic process along O, we find

T �
XN
‘�1

I‘
�‘; (12)

which is the total action of the quantum state on average.
Putting all these together, we arrive at

XN
‘�1

I‘
�‘ � �� ��O�; (13)

where the overbar stands for the averaging over all the
initial angles as before. For an adiabatically evolving ei-
genstate j i � e�i��t�j’n�R�i, there is only one pair of
nonzero action and angle, the norm h j i and the phase

�, respectively. In this special case, our total action T �
T becomes the total phase 
�, accumulated during the
adiabatic evolution of the eigenstate. Therefore, the total
action is also a generalization of the total phase, and
relation (13) says that our phase � is the geometric part
of this generalized total phase. Finally, we note that this
relation (13) can also be regarded as another expression for
our phase �, which is easier to be implemented numeri-
cally and is used to compute the results in Fig. 2.

According to Hannay [8], the rotating angles � pick up
geometric angles � � f�1; �2; . . . ; �Ng in addition to the
dynamical part as R traverse slowly round a loop O. These
angles �, known as Hannay’s angles and regarded as a
classical concept, have now shown up naturally in quantum
systems. In light of this recognition, the geometric part of
the total action T is apparently

P
‘I‘�‘, which should

equal our phase �. Taking the derivative of Eq. (13) with
respect to I‘, we then obtain

�‘�O� � �
@
@I‘

��O�; (14)

which relates our geometric phase and Hannay’s angle in a
derivative form. This relation can be viewed from another
angle. The quantum system (linear or nonlinear) of Eq. (1)
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may be regarded as the classical limit of a second-
quantized system Ĥ , where  j becomes an operator  ̂j.
According to Ref. [12], our phase � is the usual Berry’s
phase for this second-quantized system in the semiclassical
limit. In other words, the relation (14) is also the semiclas-
sical relation between Hannay’s angles and Berry’s phases,
which has been known for a while [12–14].

So far, we have focused on completely integrable sys-
tems (or regions). Our phase � can be generalized to other
nonintegrable systems, including the class of chaotic sys-
tems studied in Ref. [15]. One can achieve this by expand-
ing the averaging in Eq. (6). Namely, if the system has only
K�<N� adiabatic invariants, the averaging in Eq. (6) is then
over all initial states with the same K invariants.

We now illustrate the new phase � with two examples.
First, we consider a general quantum state in linear sys-
tems, where the evolving quantum state can be expanded in
terms of the normalized eigenstates,

j �t�i �
XN
n�1

an�t�j’n�R�i: (15)

According to the quantum adiabatic theorem [1], the occu-
pation probabilities of different eigenstates janj2 are adia-
batic constants. In fact, they are actions In � janj2 when
the system is regarded mathematically as a classical
Hamiltonian system [16]; their corresponding angle varia-
bles �n’s are the phases of an’s. With these in mind, the
computation of Eq. (6) with the state (15) is straightfor-
ward. We find that the off-diagonal terms become zero
after the averaging, and the geometric phase � is

��O� �
XN
n�1

janj2�n�O�: (16)

Therefore, in linear quantum systems, the phase � is just a
weighted summation of Berry’s phases of all the eigen-
states involved. Interestingly, this kind of weighted sum-
mation of Berry’s phases has already been applied in real
physical systems [17,18]. Interestingly, if we apply
Eq. (14) to Eq. (16), we find that these Hannay’s angles
differ from Berry’s phases only by a sign, �n � ��n.

Second, we study a nonlinear two-level model given by

i
d 1

dt
�

�
cj 2j

2 �
Z
2

�
 1 �

X� iY
2

 2; (17)

i
d 2

dt
�

�
cj 1j

2 �
Z
2

�
 2 �

X� iY
2

 1: (18)

This simple model can be used to describe the Josephson
effect of Bose-Einstein condensates residing in a double-
well potential [5,19]. The complex coupling constant, as
denoted by X and Y, can be realized in experiment through
phase imprinting on one of the two wells [20].

We first look at the geometric phase � for eigenstates of
this nonlinear quantum system. This is to find all the
eigenstates j’n�R�i, and then use them to calculate the
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FIG. 2. Geometrical phases � of the nonlinear two-level model
(17) and (18): (a) the lower eigenstate and (b) the noneigenstate
near the lower eigenstate. The noneigenstate has an action (or
AA phase) of I � 0:005. The inset shows the closed path O used
that is a circle on a unit sphere with Z fixed. The circle is
traversed with a rate of 0.001. The results for eigenstates are
compared to the analytical expression of Eq. (19) (denoted by
diamonds): a very good match is found.
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phase with Eq. (3). They could be done numerically; for-
tunately for this simple case, analytical results can be
obtained. When the path is restricted on the unit sphere
X2 � Y2 � Z2 � 1, we find that the phases for these non-
linear eigenstates are

��O� �
Z
@S�O

#3�R� c#ẑ�  dS

�c#� Z�2�c#3 � Z�
; (19)

where ẑ is the unit vector along the z axis and # is one of
the real roots of

c2#4 � 2cZ#3 � �1� c2�#2 � 2cZ#� Z2 � 0: (20)

Different real roots # correspond to different eigenstates.
Equation (20) can have more than two real roots, indicating
that there can be more than two eigenstates [21]. Here we
limit ourselves to the situations where Eq. (20) has only
two real roots. For the path O that is a circle with a fixed Z,
the geometric phase in Eq. (19) becomes � � �1� #�%.
The diamonds in Fig. 2 show how � for the lower eigen-
state changes with Z.

For a general quantum state, we have to resort to nu-
merical means. The path O is picked to be a circle with
fixed Z. We then solve Eqs. (17) and (18) numerically after
choosing a changing rate v � 0:001 for the parameters
R � fX; Y; Zg. The evolving states are recorded and used
to compute the phase � with Eq. (13), where the averaging
is done for different initial states with the same action (or
AA phase) I. Results for c � 0:05 are plotted in Fig. 2,
showing how the phase changes with Z. Computation is
done for both eigenstate and noneigenstate, and the results
(solid lines) are compared to the phases for the linear case
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c � 0:0 (dashed lines). The changing rate of R (v �
0:001) is slow enough to be considered as adiabatic. This
is witnessed by the good fit between the solid line and the
diamonds in Fig. 2(a) as the diamonds are the analytical
results of Eq. (19).

In conclusion, a geometric phase for the adiabatic evo-
lution of general quantum states is introduced. It applies to
noneigenstates as well as eigenstates in both linear and
nonlinear quantum systems. Our geometric phase is related
to Hannay’s angles, which arise naturally in a canonical
description of adiabatic dynamics of quantum states. Like
the usual Berry’s phase, it also affects the effective dynam-
ics of slow variables. A nonlinear two-level system is used
to demonstrate our results.
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