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Spin Transfer Torque
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1. Superconductor Spin Valves

T, of SC: Parallel vs. Antiparallel

Spin injection: Long vs. short spin lifetime

Dynamic spin injection

Large spin Hall effect
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1. Spin transfer torque

2. Spin orbit torque and spin Hall effect

3. Spin orbit torque and Rashba-Edelstein effect
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Review of last class

1. Theory and observation of spin transfer torque

2. Spin transfer torque and spin pumping

3. Spin transfer torque in MTJ and Domain wall motion

S. Thermal spin transfer torque

6. Pure Spin current transfer torque



1. Theory and observation of spin
transfer torque



Spin angular momentum

The Einstein—de Haas effect
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Spin transfer torque

PHYSICAL REVIEW B VOLUME 54, NUMBER 13 1 OCTOBER 1996-1

Emission of spin waves by a magnetic multilayer traversed by a current

L. Berger
Department of Physics, Carnegie-Mellon University, Pittsburgh, Pennsylvania 15213-3890
(Received 31 January 1996)

The interaction between spin waves and itinerant electrons is considerably enhanced in the vicinity of an
interface between normal and ferromagnetic layers in metallic thin films. This leads to a local increase of the
Gilbert damping parameter which characterizes spin dynamics. When a dc current crosses this interface,
stimulated emission of spin waves is predicted to take place. Beyond a certain critical current density, the spin
damping becomes negative; a spontaneous precession of the magnetization is predicted to arise. This is the
magnetic analog of the injection laser. An extra dc voltage appears across the interface, given by an expression
similar to that for the Josephson voltage across a superconducting junction. [S0163-1829(96)00237-8]
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Spin transfer torque

M Journal of

magnetic
M materials

Letter to the Editor
Current-driven excitation of magnetic multilayers

J.C. Slonczewski
FBM Research Division, Thews A, Waison Research Center, Box 216, Yardown RHeighiz, N¥ 10306, 054
Received 27 Cetober 1995, revised 19 December 1995

Ahstract

A new mechanism is proposed for exciting the magnetic state of a ferromagnet. Assuming ballistic conditions and using
WEB wave funchions, we predict that a transfer of vectorial spin accompanies an electric cumment flowing perpendicular 1o
twio paratlel magnetic films connected by a normal metallic spacer. This spin transfer drives maotions of the two
magnetization vecters within their instantanecusly common plane. Consequent new mesoscopic precession and switching
phenomena with potential applications are predicted.
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transfer torque
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Experimental discovery of STT
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Experimental discovery of STT
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Experimental discovery of STT
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Experimental discovery of STT
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Experimental discovery of STT

o8 « O
Au e-
Co 1 - (positive bias)
Co2—»
Cu
O - ®

1.0 0.0 1.0
H (kOe€) yatine, et al, PRL, 84, 3149 (2000) ’



Experimental discovery of STT

dv/dl (£2)
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Experimental discovery of STT
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Spin transfer torque switching

Moment in an applied field along z with no anisotropy

a b Low current C High current, d High current,

Applicd el —rdamped motion —stable precession —switching

e

Initial
Magnetization

Ralph & Stiles, JMMM, 320, 1190-1216 (2008) 29



2. Spin transfer torque and
spin pumping
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Ferromagnhetic resonance

energy gugH/2
A

Lorentzian
function -gngH/2
> H

resonance condition: o=,
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Ferromagnhetic resonance

: L -Lifshitz-Gil ion
Heff (StatIC) andau-Lifshitz-Gilbert equatio
)

| .
“ymXxHep o _dm
T —ymxHeff+am><E

_dm
it X —— ]

dt y = s is gyromagnetic ratio

e

a is the Gilbert damping

H, e'“ (rf): small perturbation
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Spin angular momentum
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Spin transfer torque
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Enhanced Gilbert damping
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Enhanced Gilbert damping and torque

Spin pumping
and
spin-transfer torque
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Heinrich et al, PRL, 90, 187601 (2003)
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Enhanced Gilbert damping and torque

Heinrich et al, PRL, 90, 187601 (2003)
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Enhanced Gilbert damping and torque

i I-

dy /dH

ol

dy" { dH

AH,, AR, [Oe]

H i _.I'-I 1

|_hl|I i
30 32 34
H [kOe]

32



Spin transfer torque

APPLIED PHYSICS LETTERS 88, 182509 (2006)

Conversion of spin current into charge current at room temperature:
Inverse spin-Hall effect

E. Saitoh, M. Ueda, and H. Miyajima
Department of Physics, Keio University, Yokohama 223-8522, Japan

G. Tatara
PRESTO, Japan Science and Technology Agency (JST), Department of Physics,

Tokyo Metropolitan University, Tokyo 192-0397, Japan
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Spin transfer torque
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Mosendz, et al, PRL, 104, 046601 (2010) 4,



Spin transfer torque

TABLE I. Spin Hall angle y determined using A,y and oy from
data measured at 11 GHz.

A s aN
Mormal metal (nm} 1/(f) m) ¥
Pt 10+ 2 (24+0.2) % 10° 0.013 =0.002
Pd 15+4 (4.0+-0.2) X 10° 0.0064 + 0.001
Au 35+3  (252*0.13)x 107 0.0035=0.0003

Mo 3I5+3  (466=0.23)x10° =0.0005 = 0.0001
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3. Spin transfer torque in
MTJ
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Magnetic tunnel junction (MTJ)
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in MTJ for MRAM

SST
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MTJ for MRAM
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SST in MTJ for MRAM
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Measurement of STT in MTJ
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Measurement of STT
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Application of STT Iin MTJ

MRAM

IBM, Samsung, Headway, Micron, et al 49



Application of STT Iin MTJ

Table 1| Comparison of key features of existing and emerging memories.

SRAM eDRAM DRAM eFlash (NOR) Flash (NAND) FeRAM PCM STT-MRAM RRAM
Endurance Unlimited Unlimited Unlimited 10° 10° oM 10° Unlimited 10°
(cycles)
Read/write <] 1-2 30 10/10° 100/10¢ 30 10/100 2-30 1-100
access time
(ns)
Density Low (six Medium Medium Medium High (multiple Low (limited High (multiple Medium High (multiple
transistors) bitspercell)  scalability) bits percell) bits per cell)
Write power Medium Medium Medium High High Medium Medium Medium Medium
Standby High Medium Medium Low Low Low Low Low Low
power
Other Volatile Volatile. Refresh Volatile. Refresh Highvoltage Highvoltage  Destructive Operating Low read Complex
powerandtime powerandtime required required readout T<125°C signal mechanism
needed needed

Significant disadvantages are marked in bold. Estimates for emerging memaories are based on expectations for functioning chips, not demonstrations of individual bits. See text for abbreviations.

Kent & Worledge, Nature Nano 10,187-191 (2015)
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4. Spin transfer torque in
domain wall motion
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Why domain wall

Racetrack Memory
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Parkin, et al, Science, 320, 190-194 (2008) 48



Why domain wall

Domain wall MTJ
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Domain wall motion by STT
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hY
26"
MFM scanning area b — e A e A
240 nm TS T {d} iy LA ,_fﬂz-m._.—m}
.
10 ym
I U

0.5 ym

()

Yamaguchi, et al, 92, 077205 PRL (2004)
50



Domain wall motion by STT




Domain wall motion by STT
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Domain wall motion by STT
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Domain wall motion by STT
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Domain wall motion by STT

FM Semiconductor: GaMnAs
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Yamaguchi, et al, Nature (2004)
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Domain wall motion by STT

FM Semiconductor: GaMnAs
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Domain wall motion by STT

FM Semiconductor: GaMnAs

Initial state After | = =300 pA (100 ms) After / = +300 pA (100 ms)
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Fast domain wall motion

Brataas, Nature Nanotech, 8, 485-486 (2013)
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Fast domain wall motion
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Fast domain wall motion
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Fast domain wall motion

Yang, et al, Nature Nanotech, 10, 221-226 (2015) 61



Fast domain wall motion
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Fast domain wall motion
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Vertical racetrack A

Parkin & Yang, et al, Nature Nanotech, 10, 195-198 (2015) g3



5. Thermal spin transter
torque
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Thermal Spin Injection
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Thermal Spin torque
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Thermal Spin torque
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Thermal Spin torque
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6. Pure spin current transfer
torque
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Pure spin current

Spin polarized current

a N\

\_ /
Pure spin current

- N




Pure spin current
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Pure spin current torque

Yang, et al, Nature Physics, 4, 851-854 (2008)
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Pure spin current torque
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Spin orbit torque

TST:Eﬁ\lX(é\-Xfﬁ)

Brataas, Nature Nano, 9, 86-88 (2014)
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Other ways for pure spin current

Spin Hall effect

Charge current ,_--:_'".f'-'-:" !
Yy

Spin current

D'yakonov, M. 1. & Perel', J. Exp. Theor. Phys. Lett. 13, 467-469, (1971).
Hirsch, J. E. Phys. Rev. Lett. 83, 1834-1837, (1999).
Zhang, S. Phys. Rev. Lett. 85, 393-396, (2000).
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Spin Hall torque
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Other ways for pure spin current

V. M. Edelstein, Solid State Commun. 73, 233 (1990)
A. Manchon, et al, Nat. Mater. 14, 871 (2015)
J. C. R. Sanchez, et al, Phys. Rev. Lett. 116, 096602 (2016)
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Rashba field torque
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Review of last class

1. Theory and observation of spin transfer torque
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